Electronics and Electrical Engineering and Control

Testability index determination method based on ROM model

  • YANG Peng ,
  • QIU Jing ,
  • LIU Guanjun ,
  • ZHANG Yong
Expand
  • Key Laboratory of Science and Technology on Integrated Logistics Support, School of Intelligence Science, National University of Defense Technology, Changsha 410073, China

Received date: 2020-09-04

  Revised date: 2020-09-24

  Online published: 2020-10-16

Supported by

Equipment Pre-research Project(41403020101); National Natural Science Foundation of China Youth Science Foundation (51605482)

Abstract

Aiming at the lack of theoretical and practical testability index demonstration method in practice, a novel method based on the ROM(operational readiness, reliability and maintainability) model is proposed. Starting from the relational expression of operational readiness (O), reliability (R) and maintainability (M), we establish the relations among Mean Time Between Failure (MTBF), Mean Time to Repair (MTTR) and fault diagnosis rate, false alarm rate and Built in Test (BIT) failure rate and substitute them into the "ROM" formula, obtaining the relation between the operational readiness and testability parameters. The relations between testability parameters and the number of BITs (number of BITs) are further established and substituted into the "ROM" formula to achieve the relation between operational readiness and number of BITs. The optimal number of BITs can be obtained from the curve of operational readiness and number of BITs, and the best testability index is derived subsequently. Considerable conclusions have been drawn from the simulation analysis of the availability curves, providing sufficient reference for different applications in setting parameters. Finally, photoelectric integrated equipment is used as a case to demonstrate the effectiveness of the ROM model and method.

Cite this article

YANG Peng , QIU Jing , LIU Guanjun , ZHANG Yong . Testability index determination method based on ROM model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(12) : 324717 -324717 . DOI: 10.7527/S1000-6893.2020.24717

References

[1] 田仲, 石君友. 系统测试性设计分析与验证[M]. 北京:北京航空航天大学出版社, 2003:71-89. TIAN Z, SHI J Y. System testability design analysis and evaluation[M]. Beijing:Beihang University Press, 2003:71-89(in Chinese).
[2] 苏永定, 刘冠军, 邱静, 等. 系统测试性指标确定方法[J]. 测试技术学报, 2008, 22(5):401-405. SU Y D, LIU G J, QIU J, et al. Research on system testability index determination method[J]. Journal of Test and Measurement Technology, 2008, 22(5):401-405(in Chinese).
[3] 常春贺, 杨江平, 刘飞. 复杂装备系统测试性指标确定方法[J]. 装备指挥技术学院学报, 2011, 22(3):110-113. CHANG C H, YANG J P, LIU F. Research on a determination method for system testability index of complicated equipment[J]. Journal of the Academy of Equipment Command & Technology, 2011, 22(3):110-113(in Chinese).
[4] 谢宗仁, 吕建伟, 徐一帆, 等. 舰船装备总体测试性指标定量要求的确定方法[J]. 海军工程大学学报, 2017, 29(6):49-54. XIE Z R, LÜ J W, XU Y F, et al. Approaches of determining quantitative total testability indicators of warship equipment[J]. Journal of Naval University of Engineering, 2017, 29(6):49-54(in Chinese).
[5] 苏永定, 邱静, 杨鹏. 面向任务的导弹测试性需求分析与指标确定[J]. 国防科技大学学报, 2011, 33(2):125-129. SU Y D, QIU J, YANG P. Missile testability requirement analysis and index determination oriented to mission[J]. Journal of National University of Defense Technology, 2011, 33(2):125-129(in Chinese).
[6] LV J, XIE Z R, XU Y F. Quantitative relationship between readiness and availability of weapon system and its application[C]//Proceedings of the 2015 International Conference on Modeling, Simulation and Applied Mathematics. Paris:Atlantis Press, 2015:89-93.
[7] 张延生, 黄考利, 陈建辉, 等. 复杂装备测试性指标确定方法研究[J]. 军械工程学院学报, 2010, 22(6):7-10. ZHANG Y S, HUANG K L, CHEN J H. Research on determining TFOMs of complex equipment[J]. Journal of Ordnance Engineering College, 2010, 22(6):7-10(in Chinese).
[8] 吕晓明, 黄考利, 连光耀, 等. 复杂装备系统级测试性指标确定方法研究[J]. 计算机测量与控制, 2008, 16(3):357-359, 362. LV X M, HUANG K L, LIAN G Y, et al. Research on deciding testability figures of complicated equipment[J]. Computer Measurement & Control, 2008, 16(3):357-359, 362(in Chinese).
[9] VOROB'EV G V, PSHENICHNAYA K S, SOKOLOV O V, et al. Methodology of the system analysis of the influence of testability indicators on the usage efficiency of aircraft weapons systems[J]. Journal of Computer and Systems Sciences International, 2012, 51(5):663-680.
[10] 吕建伟, 谢宗仁, 徐一帆. 装备故障隔离模糊度要求值的确定和优化方法研究[J]. 系统工程与电子技术, 2016, 38(5):1208-1214. LÜ J W, XIE Z R, XU Y F. Requirement's determining and optimization on fault isolation's ambiguity group size of weapon system[J]. Journal of Systems Engineering and Electronics, 2016, 38(5):1208-1214(in Chinese).
[11] 钱彦岭, 邱静, 温熙森. 确定系统级测试性参数的广义随机Petri网模型[J]. 系统工程与电子技术, 2002, 24(5):4-7. QIAN Y L, QIU J, WEN X S. Generalized stochastic petri network for defining the system-level testability parameters and figure of merit[J]. Systems Engineering and Electronics, 2002, 24(5):4-7(in Chinese).
[12] 苏永定, 刘冠军, 邱静. 基于DSPN的多阶段任务系统测试性需求建模与分析[J]. 系统工程理论与实践, 2010, 30(7):1272-1278. SU Y D, LIU G J, QIU J. DSPN-based testability requirement modeling and analysis of phased-mission systems[J]. Systems Engineering-Theory & Practice, 2010, 30(7):1272-1278(in Chinese).
[13] SU Y D, QIU J, LIU G J, et al. Modeling of testability requirement based on generalized stochastic petri nets[J]. Journal of China Ordnance, 2009, 5(1):60-64.
[14] 白力舸, 王华茂, 闫金栋. 基于DSPN的航天器系统级可测试性指标确定方法[J]. 航天器工程, 2013, 22(6):127-133. BAI L G, WANG H M, YAN J D. Spacecraft system testability figure requirement determination method based on DSPN[J]. Spacecraft Engineering, 2013, 22(6):127-133(in Chinese).
[15] 王小强, 韩斌. 基于GSPN的飞机测试性指标确定方法研究[J]. 计算机测量与控制, 2016, 24(4):13-15, 18. WANG X Q, HAN B. Research on determination method for testability index of aircraft based on GSPN[J]. Computer Measurement & Control, 2016, 24(4):13-15, 18(in Chinese).
[16] 翟禹尧, 史贤俊, 吕佳朋. 基于广义随机Petri网的导弹系统测试性建模与指标评估方法研究[J]. 兵工学报, 2019, 40(10):2070-2079. ZHAI Y Y, SHI X J, Lü J P. Research on evaluation method for testability index and modeling of missile system based on GSPN[J]. Acta Armamentarii, 2019, 40(10):2070-2079(in Chinese).
[17] ZHAO J T, CHEN Z Q, LIU Z X. Modeling and analysis of colored petri net based on the semi-tensor product of matrices[J]. Science China Information Sciences, 2017, 61(1):1-16.
[18] WU X Y, YAN H, LI L R. Numerical method for reliability analysis of phased-mission system using Markov chains[J]. Communications in Statistics-Theory and Methods, 2012, 41(21):3960-3973.
[19] RAMOS G, SANCHEZ J L, TORRES A, et al. Power systems security evaluation using petri nets[J]. IEEE Transactions on Power Delivery, 2010, 25(1):316-322.
[20] 方欢, 方贤文, 王丽丽. Petri网在可靠性分析中的研究综述[J]. 计算机科学, 2014, 41(7):40-44. FANG H, FANG X W, WANG L L. Review of reliability analysis based on petri nets[J]. Computer Science, 2014, 41(7):40-44(in Chinese).
[21] 石健, 王少萍, 王康. 基于GSPN的机载液压作动系统可靠性模型[J]. 航空学报, 2011, 32(5):920-933. SHI J, WANG S P, WANG K. GSPN-based reliability model of aircraft hydraulic actuator system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):920-933(in Chinese).
[22] 李展, 单士华. 基于GSPN的舰载服务器系统可靠性建模及分析[J]. 火力与指挥控制, 2015, 40(5):57-60, 64. LI Z, SHAN S H. Modeling and analysis of reliability for shipboard server system by GSPN[J]. Fire Control & Command Control, 2015, 40(5):57-60, 64(in Chinese).
[23] 杨为民, 阮镰, 俞沼, 等. 可靠性·维修性·保障性总论[M]. 北京:国防工业出版社, 1995:20-24. YANG W M, RUAN L, YU Z, et al. Reliability, maintainability and supportability generalization[M]. Beijing:National Defense Industry Press, 1995:20-24(in Chinese).
[24] 杨鹏, 谢皓宇, 邱静. 一种基于二次分配的测试性指标分配方法[J]. 航空学报, 2019, 40(9):323070. YANG P, XIE H Y, QIU J. A testability index allocation method based on quadratic allocation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):323070(in Chinese).
[25] 邱静. 装备测试性建模与设计技术[M]. 北京:科学出版社, 2015:183-188. QIU J, LIU G J, YANG P, et al. Equipment testability modeling and design[M]. Beijing:Science Press, 2013:183-188(in Chinese).
Outlines

/