Article

Modeling and verification of thermal response in connection area of current-assisted riveting CFRP

  • QI Zhenchao ,
  • XIAO Yexin ,
  • ZHANG Ziqin ,
  • WANG Xingxing ,
  • CHEN Wenliang
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-07-13

  Revised date: 2020-08-08

  Online published: 2020-10-16

Supported by

National Natural Science Foundation of China (51875283); Fundamental Research Funds for the Central Universities (NS2020035); Foundation Strengthening Program Technology Field Fund (2019-JCJQ-JJ-341)

Abstract

Titanium alloy rivets tend to become uneven and crack easily when deformed. Pulse current is therefore introduced in the riveting process of the Carbon Fibre-Reinforced Polymer (CFRP) to soften the rivets and improve their plasticity. The thermal response mechanism and temperature field distribution in the connection domain are studied. A static Joule heating model is constructed based on the conservation of energy, Joule's heat law, and the law of heat conduction to characterize the CFRP temperature under steady-state heat exchange riveting conditions. Considering the current fluctuation and the uneven temperature distribution during riveting and the dispersion of the hot zone, we establish a dynamic temperature field model to predict the temperature rise during the riveting process. The results show that the temperature within a certain radiation radius around the CFRP hole is linearly related to that of the nail center, and the model accurately simulates the process temperature within 40 s. The static model accurately predicted the central saturation temperature within an error of 11%, and the trend of temperature rise simulated by the dynamic model was in good agreement with the measured temperature value. The hysteresis of heat transfer leads to an error of the dynamic model in temperature prediction during rapid temperature rise. The error increases with the rising of the current density, and the maximum value reaches 17.15%. The joint damage assessment reveals that qualified riveted joints can be obtained when the process temperature is controlled within 150℃.

Cite this article

QI Zhenchao , XIAO Yexin , ZHANG Ziqin , WANG Xingxing , CHEN Wenliang . Modeling and verification of thermal response in connection area of current-assisted riveting CFRP[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524535 -524535 . DOI: 10.7527/S1000-6893.2020.24535

References

[1] POTAPOVA A A, STOLYAROV V V. Deformability and structural features of shape memory TiNi alloys processed by rolling with current[J]. Materials Science and Engineering:A, 2013, 579:114-117.
[2] 丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1):021201. DING J H, LI H, BIAN T J, et al. Electroplasticity and electrically-assisted forming:A critical review[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021201(in Chinese).
[3] PERKINS T A, KRONENBERGER T J, ROTH J T. Metallic forging using electrical flow as an alternative to warm/hot working[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1):84-94.
[4] 刘泾源. 脉冲电流在轻合金超塑变形中的宏微观作用机制[D]. 哈尔滨:哈尔滨工业大学, 2015:44-50. LIU J Y. Effect of electric current on micro-macro mechanism of light alloy superplastic deformation[D]. Harbin:Harbin Institute of Technology, 2015:44-50(in Chinese).
[5] JONES J. Flow behavior modeling and process control of electrically-assisted forming for sheet metals in uniaxial tension[D]. Clemson:Clemson University, 2012:1-24.
[6] SÁNCHEZ EGEA A J, GONZáLEZ ROJAS H A, CELENTANO D J, et al. Mechanical and metallurgical changes on 308L wires drawn by electropulses[J]. Materials & Design, 2016, 90:1159-1169.
[7] 郭云力. 碳纤维增强树脂基复合材料的雷击防护[D]. 济南:山东大学, 2019:5-55. GUO Y L. Lightning strike protection of carbon fiber reinforced polymer composites[D]. Jinan:Shandong University, 2019:50-55(in Chinese).
[8] 李健芳, 郭鸿俊, 高杨, 等. MT300/802双马树脂基复合材料固化工艺及高温力学性能[J]. 宇航材料工艺, 2019, 49(4):34-40. LI J F, GUO H J, GAO Y, et al. Curing process and high temperature mechanical properties of MT300/802 bismaleimide matrix composites[J]. Aerospace Materials & Technology, 2019, 49(4):34-40(in Chinese).
[9] 高俊杰, 俞继军, 韩海涛, 等. 树脂基烧蚀材料细观传热特性预测[J]. 航空学报, 2017, 38(S1):721512. GAO J J, YU J J, HAN H T, et al. Prediction of meso-heat transfer characteristics of resin-based ablative materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721512(in Chinese).
[10] HOLM R. Constriction resistance of an assembly of elongated A-spots[C]//Proceedings of ICEC, 1970:16-18.
[11] SAWADA S, SHIMIZU K, HATTORI Y, et al. Analysis of contact resistance behavior for electric contacts with plating layer[C]//2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts. Piscataway:IEEE Press, 2010:1-8.
[12] THOMAS T R, PROBERT S D. Establishment of contact parameters from surface profiles[J]. Journal of Physics D:Applied Physics, 1970, 3(3):277-289.
[13] 钛和钛合金铆钉. 第3部分:平锥头铆钉:GJB 120.3A-2006[S]. 北京:总装备部军标出版发行部,2006. Titanium and titanium alloy rivets. Part 3:Flat cone-head rivets:GJB 120.3A-2006[S]. Beijing:Military Standard Publishing Department of the General Armament Department,2006.
[14] 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2):301-308. DING N, ZHAO B, LIU Z Q, et al. Simulation of ablation damage of composite laminates subjected to lightning strike[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):301-308(in Chinese).
[15] 汪鑫伟. AZ31镁合金电流辅助微成形建模及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2016:41-42. WANG X W. Modeling and mechanism of electrically-assisted micro-forming for AZ31 magnesium alloy[D]. Harbin:Harbin Institute of Technology, 2016:41-42(in Chinese).
[16] WANG X W, XU J, SHAN D B, et al. Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension[J]. International Journal of Plasticity, 2016, 85:230-257.
[17] 白生天. 高分子材料的电阻热铆焊工艺及机理研究[D]. 兰州:兰州理工大学, 2016:41-47. BAI S T. Study on resistance hot-driven rivet-welding connection of thermoplastic polymer[D]. Lanzhou:Lanzhou University of Technology, 2016:41-47(in Chinese).
[18] ROSHCHUPKIN V V, SEMASHKO N A, KRUPSKII R F, et al. Temperature and strain changes in VT20 titanium alloy under electric-pulse effect[J]. High Temperature, 2003, 41(5):633-638.
[19] HOC N Q, TINH B D, HIEN N D. Influence of temperature and pressure on the electrical resistivity of gold and copper up to 1350 K and 100 GPa[J]. Materials Research Bulletin, 2020, 128:110874.
[20] FENG K, YANG Y, SHEN B, et al. Rapid sintering of iron powders under action of electric field[J]. Powder Metallurgy, 2005, 48(2):203-204.
[21] 国防科学技术工业委员会. HB/Z 223.3-2003飞机装配工艺第3部分:普通铆接[S]. 北京:中国航空综合技术研究所, 2003:8-9. National Defense Science, Technology and Industry Committee. HB/Z 223.3-2003 Aircraft assembly process part 3:Ordinary riveting[S]. Beijing:China Aviation Technology Research Institute, 2003:8-9(in Chinese).
[22] 国防科学技术工业委员会. 飞机装配工艺第21部分:复合材料的铆接:HB/Z 223.21-2003[S]. 北京:中国航空综合技术研究所, 2003:7-8. National Defense Science, Technology and Industry Committee. Aircraft assembly process part 21:Riveting of composite materials:HB/Z 223.21-2003[S]. Beijing:China Aviation Technology Research Institute, 2003:7-8(in Chinese).
Outlines

/