During the phase of large span flight, aerodynamic parameters of guided-munitions have a large-amplitude high-frequency nonlinear chattering accompanied by varying velocity, altitude and angle of attack, adversely affecting the roll stability. Moreover, the failure and time-lag features of the actuator increase the difficulty in roll stability control. To address these problems, this paper proposes a robust adaptive fault-tolerant roll stability control method. A mathematical model of the roll channel considering the actuator fault is first established. Taking the nonlinear term and model uncertainties as external disturbances, a robust roll stability control method based on the adaptive sliding mode control theory is then presented to compensate the severe influence resulted from the nonlinear term and actuator fault. Additionally, the actuator time-lag is considered and the backstepping method implemented to suppress the actuator lag and increase the roll response speed. Simulation results show strong robustness of the proposed control method in aerodynamic disturbances and fault handling.
WANG Yuchen
,
LIN Defu
,
WANG Wei
,
JI Yi
. Adaptive fault-tolerance control method for roll stability during phase of large span flight[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(3)
: 324368
-324368
.
DOI: 10.7527/S1000-6893.2020.24368
[1] 王焕钢,沈毅,王冠珠. 制导航空炸弹变结构控制器设计[J]. 航空学报, 1998, 19(5):3-5 WANG H G, SHEN Y, WANG G Z. Variable structure controller design for guided bomb[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(5):3-5(in Chinese).
[2] GENG X,SHI Z,CHENG K.Experimental investigation of influence of strake wings on self-induced roll motion at high angles of attack[J].Chinese Journal of Aeronautics,2016,29(6):1591-1601.
[3] ARROW A, WILLIAMS D E. Comparison of classical and modern missile autopilot design and analysis techniques[J]. Journal of Guidance, Control, and Dynamics, 1989,12(2):220-227.
[4] KOVACH M J, STEVENS T R, ARROW A. A bank-to-turn autopilot design for an advanced air-to-air interceptor[C]//Guidance,Navigation and Control Conference, 2013:2579.
[5] NESLINE F W, ZARCHAN P. Why modern controllers can go unstable in practice[J]. Journal of Guidance, Control, and Dynamics, 1984,7(4):495-500.
[6] WILLIAMS D E, FRIEDLAND B. Modern control theory for design of autopilots for bank-to-turn missiles[J].Journal of Guidance,Control,and Dynamics, 1987,10(4):378-386.
[7] 彭博,王伟,王江,等. 滚转导弹解耦过载驾驶仪及其BP自适应调度法[J]. 固体火箭技术, 2017,40(6):785-792. PENG B, WANG W, WANG J, et al. BP adaptive scheduling method of the rolling missile decoupling autopilot[J]. Journal of Solid Rocket Technology, 2017,40(6):785-792(in Chinese).
[8] JIN Y C, CHWA D. Adaptive control based on a parametric affine model for tail-controlled missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(2):659-669.
[9] REZAZADEH M M, FATHI J M, MOARREFIANPOUR A. Robust roll autopilot design to reduce couplings of a tactical missile[J]. Aerospace Science and Technology, 2016, 51:142-150.
[10] SHIMA T, IDAN M, GOLAN O M. Sliding-mode control for integrated missile autopilot guidance[J]. Journal of Guidance, Control, and Dynamics, 2006,29(2):250-260.
[11] AWAD A, WANG H. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control[J]. Chinese Journal of Aeronautics,2016,29(5):1302-1312.
[12] 王伟,师兴伟,林德福,等. 基于二阶滑模控制理论的新型滚转稳定控制器[J]. 控制与决策, 2019(7):1553-1558. WANG W, SHI X W, LIN D F, et al. Novel roll stabilization controllers based on second-order sliding mode control theory[J]. Control and Desicion, 2019(7):1553-1558(in Chinese).
[13] 沈毅,王焕钢,丁兆顺. 激光制导炸弹滚转通道的滑模变结构控制[J]. 兵工学报, 1998, 19(4):372-374. SHEN Y, WANG H G, DING Z S. Variable sructure with sliding mode control for the roll channel of laser guided bombs[J]. Acta Armamentarii, 1998, 19(4):372-374(in Chinese).
[14] XU B, SHI Z, SUN F, et al. Barrier lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator Faults[J]. IEEE Transactions on Cybernetics,2018,49(3):1047-1057.
[15] HE S, LIN D. Sliding mode based impact angle guidance law considering actuator fault[J]. Optik,2015,126(20):2318-2323
[16] WANG W, XIONG S, WANG S, et al. Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure[J]. Aerospace Science and Technology, 2016,53:169-187.
[17] LI T, JIANG Z, YANG H, et al. Reconfigurable fault-tolerant control for supersonic missiles with actuator failures under actuation redundancy[J]. Chinese Journal of Aeronautics, 2020,33(1):324-338.
[18] TRIVEDIPK P K, BANDYOPADHYAY B, MAHATA S, et al. Roll stabilization:A higher-order sliding-mode approach[C]//2013 11th IEEE International Conference on Idusrial Informatics (INDIN).Piscataway,NJ:IEEE Press, 2013:420-425.
[19] RYNASKI E. Automatic control of aircraft and missiles[J]. IEEE Transactions on Automatic Control, 1966, 11(3):632-633.
[20] ROY S, BALDI S, FRIDMAN L M. On adaptive sliding mode control without a priori bounded uncertainty[J]. Automatica, 2020, 111:108650.
[21] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008. HAN J Q. Active disturbance rejection control technique-The technique for estimating and compensating the uncertainties[M]. Beijing:National Defence Industry Press, 2008(in Chinese).