Review

Future urban air mobility management: Review

  • ZHANG Honghai ,
  • ZOU Yiyuan ,
  • ZHANG Qiqian ,
  • LIU Hao
Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-08-12

  Revised date: 2020-09-09

  Online published: 2020-09-28

Supported by

National Natural Science Foundation of China (71971114)

Abstract

The development of Vertical Take-Off and Landing (VTOL) aircraft draws extensive attention to the concept of UAM. As a new type of transportation mode, Urban Air Mobility (UAM) will bring vitality to the development of future cities. However, the existing air traffic management system cannot meet the on-demand operation development requirements of future UAM, necessitating the establishment of a new future-oriented UAM management system based on the characteristics of UAM. This paper first briefly summarizes the origin, rise and development prospects of UAM with an overview of the development process, followed by the design of the operation concept of UAM, and the future UAM framework of China combined with the current characteristics of China’s Air Traffic Control. The current research status of UAM management is systematically reviewed from four aspects: airspace planning, flow control, traffic services and infrastructure. Finally, to provide reference for in-depth research and rapid development of UAM management, the challenges faced by UAM management and some relevant suggestions are presented combined with the demand for future UAM development.

Cite this article

ZHANG Honghai , ZOU Yiyuan , ZHANG Qiqian , LIU Hao . Future urban air mobility management: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 24638 -024638 . DOI: 10.7527/S1000-6893.2020.24638

References

[1] MENOUAR H, GUVENC I, AKKAYA K, et al. UAV-enabled intelligent transportation systems for the smart city:Applications and challenges[J]. IEEE Communications Magazine, 2017, 55(3):22-28.
[2] HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[EB/OL]. (2016-10-27)[2020-03-05]. https://www.uber.com/elevate.pdf.
[3] AIRBUS. Blueprint for the Sky:The roadmap for the safe integration of autonomous aircraft[EB/OL]. (2018-09-05)[2020-03-05]. https://storage.googleapis.com/blueprint/Airbus_UTM_Blueprint.pdf.
[4] THIPPHAVONG D P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations[C]//2018 Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2018.
[5] VASCIK P D, BALAKRISHNAN H, HANSMAN R J. Assessment of air traffic control for urban air mobility and unmanned systems[C]//8th International Conference on Research in Air Transportation, 2018.
[6] VASCIK P D, JOHN HANSMAN R. Scaling constraints for urban air mobility operations:Air traffic control, ground infrastructure, and noise[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[7] VASCIK P D, HANSMAN R J, DUNN N S. Analysis of urban air mobility operational constraints[J]. Journal of Air Transportation, 2018, 26(4):133-146.
[8] MATHUR A, PANESAR K, KIM J, et al. Paths to autonomous vehicle operations for urban air mobility[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019
[9] LASCARA B. Urban air mobility airspace integration Concepts[EB/OL]. (2019-06-11)[2020-03-05]. https://www.mitre.org/sites/default/files/publications/pr-19-00667-9-urban-air-mobility-airspace-integration.pdf.
[10] EMBRAERX. Flight plan 2030:An air traffic management concept for urban air mobility[EB/OL]. (2019-05-28)[2020-03-05]. https://daflwcl3bnxyt.cloudfront.net/m/f58fb8ea648aeb9/original/EmbraerX-White-Paper-Flight-Plan2030.pdf.
[11] 徐华翔. 亿航智能城市空中交通系统白皮书[EB/OL]. (2020-01-18)[2020-03-05]. https://www.ehang.com/app/down/%E4%BA%BF%E8%88%AA%E6%99%BA%E8%83%BD%E5%9F%8E%E5%B8%82%E7%A9%BA%E4%B8%AD%E4%BA%A4%E9%80%9A%E7%B3%BB%E7%BB%9F%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf. XU H X. Ehang white paper for smart urban air mobility system[EB/OL]. (2020-01-18)[2020-03-05]. https://www.ehang.com/app/down/%E4%BA%BF%E8%88%AA%E6%99%BA%E8%83%BD%E5%9F%8E%E5%B8%82%E7%A9%BA%E4%B8%AD%E4%BA%A4%E9%80%9A%E7%B3%BB%E7%BB%9F%E7%99%BD%E7%9A%AE%E4%B9%A6.pdf (in Chinese).
[12] MUELLER E R, KOPARDEKAR P H, GOODRICH K H. Enabling airspace integration for high-density on-demand mobility operations[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2017.
[13] NNEJI V C, STIMPSON A, CUMMINGS M (, et al. Exploring concepts of operations for on-demand passenger air transportation[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2017.
[14] JUSTIN C Y, MAVRIS D N. Environment impact on feasibility of sub-urban air mobility using STOL vehicles[C]//AIAA Scitech 2019 Forum.. Reston:AIAA, 2019.
[15] SOMERS L A, JUSTIN C Y, MAVRIS D N. Wind and obstacles impact on airpark placement for STOL-based sub-urban air mobility[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[16] SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[17] KADHIRESAN A R, DUFFY M J. Conceptual design and mission analysis for eVTOL urban air mobility flight vehicle configurations[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[18] FU M Y, ROTHFELD R, ANTONIOU C. Exploring preferences for transportation modes in an urban air mobility environment:Munich case study[J]. Transportation Research Record:Journal of the Transportation Research Board, 2019, 2673(10):427-442.
[19] SWADESIR L, BIL C. Urban air transportation for Melbourne metropolitan area[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[20] CONSULTING P. The future of vertical mobility:Sizing the market for passenger, inspection, and goods services until 2035[EB/OL]. (2018-03-22)[2020-03-05]. https://www.porsche-consulting.com/fileadmin/docs/04_Medien/Publikationen/TT1371_The_Future_of_Vertical_Mobility/The_Future_of_Vertical_Mobility_A_Porsche_Consulting_study__C_2018.pdf.
[21] STANLEY M. Urban air mobility flying cars:Investment implications of autonomous urban air mobility[EB/OL]. (2018-12-2)[2020-03-05]. https://www.morganstanley.com/ideas/autonomous-aircraft.
[22] GOYAL R. Urban air mobility (UAM) market study[EB/OL]. (2018-11-21)[2020-03-05]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20190001472.pdf.
[23] 王翔宇. 城市空中交通市场发展前景分析[J]. 航空动力, 2019(4):18-21. WANG X Y. The future of urban air mobility market[J]. Aerospace Power, 2019(4):18-21(in Chinese).
[24] JOINT D N. Concepts studies for future intracity air transportation systems:R70-2[R]. MIT:Department of AeronhUtics and Astronautics Flight Transportation Laboratory, 1970.
[25] DAVIS J E. A spot of land-the place of V/STOL aircraft in inter-and intra-city transport[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 1964.
[26] WOOD C. Vertical take-off aircraft for metropolitan and regional service[C]//4th Annual Meeting and Technical Display. Reston:AIAA, 1967:940.
[27] STOUT E. Study of aircraft in intraurban transportation systems:NASA-CR-1991[R]. Washington, D.C.:NASA, 1972.
[28] BRANCH M C. Urban air traffic and city planning[M]. New York:Praeger Publishers, Inc., 1973.
[29] SPECTOR S R. Helicopters-A solution to urban commercial transportation needs[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale:SAE International, 1980.
[30] HARRISON S. From the archives:Los angeles airways helicopter overturns[EB/OL]. (2017-03-10)[2020-03-05]. http://www.latimes.com/visuals/photography/la-me-fw-archives-airways-helicopter-overturn-20170221-story.html.
[31] MOORE M D. Personal air vehicles:A rural/regional and intra-urban on-demand transportation system[C]//AIAA ICAS International Air and Space Symposium and Exposition:The Next 100 Years, 2003.
[32] SHEEHAN J J. Business and corporate aviation management:On-demand air transportation[M]. New York:McGraw-Hill Companies, Inc., 2003.
[33] CWERNER S B. Vertical flight and urban mobilities:The promise and reality of helicopter travel[J]. Mobilities, 2006, 1(2):191-215.
[34] TERRAFUGIA. Transition datasheet[EB/OL]. (2020-01-11)[2020-03-05]. https://terrafugia.com/wp-content/uploads/2018/10/Transition_Datasheet_RevA.pdf.
[35] LI Y. Analysis and forecast of global civil aviation accidents for the period 1942-2016[J]. Mathematical Problems in Engineering, 2019, 2019(4):1-12.
[36] KOPARDEKAR P H. Unmanned aerial system (UAS) traffic management (UTM):Enabling low-altitude airspace and UAS operations:NASA/TM-2014-218299[R]. Moffett Field:NASA Ames Research Center, 2014.
[37] KOPARDEKAR P, RIOS J, PREVOT T, et al. Unmanned aircraft system traffic management (UTM) concept of operations[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2016.
[38] PATHIYIL L, LOW K, SOON B H, et al. Enabling safe operations of unmanned aircraft systems in an urban environment:A preliminary study[C]//International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications (ESAVS 2016). Berlin:DGON, 2016.
[39] MOHAMED SALLEH M F B, LOW K H. Concept of operations (ConOps) for traffic management of unmanned aircraft systems (TM-UAS) in urban environment[C]//AIAA Information Systems-AIAA Infotech@Aerospace. Reston:AIAA, 2017.
[40] KOPARDEKAR P. Urban air mobility:Initial reflections[EB/OL]. (2017-03-25)[2020-03-05]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170009886.pdf.
[41] SESAR. U-space blueprint[EB/OL]. (2017-10-31)[2020-03-05]. https://www.sesarju.eu/sites/default/files/documents/reports/U-space%20Blueprint%20broch-ure%20final.PDF.
[42] ADMINISTRATION F A. Unmanned aircraft system (UAS) traffic management concept of operations V1.0[EB/OL]. (2018-06-05)[2020-03-05]. https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf.
[43] HOMOLA J, DAO Q A, MARTIN L, et al. Technical capability level 2 unmanned aircraft system traffic management (UTM) flight demonstration:Description and analysis[C]//2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC).Piscataway:IEEE Press, 2017:1-10.
[44] JOHNSON M, JUNG J, RIOS J, et al. Flight test evaluation of an unmanned aircraft system traffic management (UTM) concept for multiple beyond-visual-line-of-sight operations[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), 2017.
[45] AWEISS A, HOMOLA J, RIOS J, et al. Flight demonstration of unmanned aircraft system (UAS) traffic management (UTM) at technical capability level 3[C]//2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC).Piscataway:IEEE Press, 2019:1-7.
[46] CORUS. U-space concept of operations Vol1[EB/OL]. (2019-11-08)[2020-03-05]. https://www.sesarju.eu/sites/default/files/documents/u-space/CORUS%20Con-Ops%20vol1.pdf.
[47] CORUS. U-space concept of operations Vol2[EB/OL]. (2019-11-08)[2020-03-05]. https://www.sesarju.eu/sites/default/files/documents/u-space/CORUS%20Con-Ops%20vol2.pdf.
[48] SESAR. Initial view on principles for the U-space architecture[EB/OL]. (2019-07-29)[2020-03-05]. https://www.sesarju.eu/sites/default/files/documents/u-space/SESAR%20principles%20for%20U-space%20archit-ecture.pdf.
[49] ZHANG J P. UOMS in China[EB/OL]. (2018-06-11)[2020-03-05]. https://rpas-regulations.com/wp-content/uploads/2018/06/1.2-Day1_0910-1010_CAAC-SRI_Zhang-Jianping_UOMS-_EN.pdf.
[50] JARUS. JARUS Guidelines on specific operations risk assessment (SORA)[EB/OL]. (2019-03-06)[2020-03-05]. http://jarus-rpas.org/sites/jarus-rpas.org/files/jar_doc_06_jarus_sora_v2.0.pdf.
[51] 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4):35-54. LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4):35-54(in Chinese).
[52] METI. Roadmap for the application and technology development of UAVs in Japan[EB/OL]. (2019-02-01)[2020-03-05]. https://www.meti.go.jp/english/policy/mono_info_service/robot_industry/downloadfiles/uasroadmap.pdf.
[53] NAKAMURA H, HARADA K, OURA Y, et al. UTM concept demonstrations in Fukushima; requirements for UAS-port operation with different UAS operators[C]//2018 International Conference on Unmanned Aircraft Systems (ICUAS).Piscataway:IEEE Press, 2018:1295-1301.
[54] METI. UTM project in Japan[EB/OL]. (2017-08-05)[2020-03-05]. https://gutma.org/montreal-2017/wp-content/uploads/sites/2/2017/07/UTM-Project-in-Japan_METI.pdf.
[55] METI. Roadmap toward air mobility revolution[EB/OL]. (2019-01-07)[2020-03-05]. https://www.meti.go.jp/english/press/2018/pdf/1220_004a.pdf.
[56] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1):023238. QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management:an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):023238(in Chinese).
[57] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis:Relating airspace structure and capacity for extreme traffic densities[C]//11th USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), 2015.
[58] GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones[J]. IEEE Access, 2016, 4:1148-1162.
[59] JANG D S, IPPOLITO C A, SANKARARAMAN S, et al. Concepts of airspace structures and system analysis for UAS traffic flows for urban areas[C]//AIAA Information Systems-AIAA Infotech@Aerospace. Reston:AIAA, 2017.
[60] CLOTHIER R, WALKER R, FULTON N, et al. A casualty risk analysis for unmanned aerial system (UAS) operations over inhabited areas[C]//Second Australasian Unmanned Air Vehicle Conference, 2007:1-15.
[61] ROTHFELD R, BALAC M, PLOETNER K O, et al. Agent-based simulation of urban air mobility[C]//2018 Modeling and Simulation Technologies Conference. Reston:AIAA, 2018.
[62] QI F, ZHU X T, MANG G, et al. UAV network and IoT in the sky for future smart cities[J]. IEEE Network, 2019, 33(2):96-101.
[63] ULLAH H, GOPALAKRISHNAN NAIR N, MOORE A, et al. 5G communication:An overview of vehicle-to-everything, drones, and healthcare use-cases[J]. IEEE Access, 2019, 7:37251-37268.
[64] CHO J, YOON Y. How to assess the capacity of urban airspace:A topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C:Emerging Technologies, 2018, 92:137-149.
[65] SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. Analysis of airspace structure and capacity for decentralized separation using fast-time simulations[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(1):38-51.
[66] ARNTZEN M, AALMOES R, BUSSINK F, et al. Noise computation for future urban air traffic systems:NLR-TP-2015-289[R]. Amsterdam:National Aerospace Laboratory NLR, 2015.
[67] VIDOSAVLJEVIC A, DELAHAYE D, SUNIL E, et al. Complexity analysis of the concepts of urban airspace design for metropolis project[C]//4th ENRI International Workshop on ATM/CNS. Tokyo:ENRI, 2015.
[68] HOEKSTRA J M, MAAS J, TRA M, et al. How do layered airspace design parameters affect airspace capacity and safety?[C]//7th International Conference on Research in Air Transportation, 2016.
[69] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. The influence of traffic structure on airspace capacity[C]//7th International Conference on Research in Air Transportation, 2016.
[70] HOEKSTRA J M, ELLERBROEK J, SUNIL E, et al. Geovectoring:reducing traffic complexity to increase the capacity of uav airspace[C]//8th International Conference on Research in Air Transportation, 2018.
[71] SUNIL E, ELLERBROEK J, HOEKSTRA J M, et al. Three-dimensional conflict count models for unstructured and layered airspace designs[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:295-319.
[72] LOWRY M. Towards high-density urban air mobility[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[73] CHO J, YOON Y. Extraction and interpretation of geometrical and topological properties of urban airspace for UAS operations[C]//13th USA/Europe Air Traffic Management Research and Development Seminar (ATM 2019), 2019.
[74] MCFADYEN A, BRUGGEMANN T. Unmanned air traffic network design concepts[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2017:1-7.
[75] MOHAMED SALLEH M F B, CHI W C, WANG Z K, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Reston:AIAA, 2018.
[76] BULUSU V, POLISHCHUK V. A threshold based airspace capacity estimation method for UAS traffic management[C]//2017 Annual IEEE International Systems Conference (SysCon).Piscataway:IEEE Press, 2017:1-7.
[77] BULUSU V, POLISHCHUK V, SENGUPTA R, et al. Capacity estimation for low altitude airspace[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2017.
[78] BULUSU V, SENGUPTA R, POLISHCHUK V, et al. Cooperative and non-cooperative UAS traffic volumes[C]//2017 International Conference on Unmanned Aircraft Systems (ICUAS).Piscataway:IEEE Press, 2017:1673-1681.
[79] BULUSU V, SENGUPTA R, MUELLER E R, et al. A throughput based capacity metric for low-altitude airspace[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[80] BULUSU V. Urban air mobility:Deconstructing the next revolution in urban transportation-feasibility, capacity and productivity[D]. Berkeley:University of California, Berkeley, 2019.
[81] KROZEL J, PETERS M, BILIMORIA K. A decentralized control strategy for distributed air/ground traffic separation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[82] CONSIGLIO M, MUÑOZ C, HAGEN G, et al. ICAROUS:Integrated configurable algorithms for reliable operations of unmanned systems[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2016:1-5.
[83] ZHU G D, WEI P. Low-altitude UAS traffic coordination with dynamic geofencing[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2016.
[84] BALAKRISHNAN H, CHANDRAN B. A distributed framework for traffic flow management in the presence of unmanned aircraft[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), 2017.
[85] BRITTAIN M, WEI P. Autonomous aircraft sequencing and separation with hierarchical deep reinforcement learning[C]//8th International Conference on Research in Air Transportation, 2018.
[86] SHIHAB S A M, WEI P, RAMIREZ D S J, et al. By schedule or on demand?-A hybrid operation concept for urban air mobility[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[87] ZHOU J Z, JIN L, WANG X, et al. Resilient UAV traffic congestion control using fluid queuing models[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, doi:10.11091TITS.2020.3004406.
[88] BAHABRY A, GHAZZAI H, VESONDER G, et al. Space-time low complexity algorithms for scheduling a fleet of UAVs in smart cities using dimensionality reduction approaches[C]//2019 IEEE International Systems Conference (SysCon). Piscataway:IEEE Press, 2019:1-8.
[89] ROY S, HERNICZEK KOTWICZ M T, LEONARD C, et al. A multi-commodity network flow approach for optimal flight schedules for an airport shuttle air taxi service[C]//AIAA Scitech 2020 Forum.Reston:AIAA, 2020.
[90] XUE M, RIOS J, SILVA J, et al. Fe3:An evaluation tool for low-altitude air traffic operations[C]//2018 Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2018.
[91] PREVOT T, HOMOLA J, MERCER J. From rural to urban environments:human/systems simulation research for low altitude UAS traffic management (UTM)[C]//16th AIAA Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2016.
[92] BOSSON C, LAUDERDALE T A. Simulation evaluations of an autonomous urban air mobility network management and separation service[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[93] BERTRAM J, WEI P. An efficient algorithm for self-organized terminal arrival in urban air mobility[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[94] KLEINBEKMAN I C, MITICI M A, WEI P. eVTOL arrival sequencing and scheduling for on-demand urban air mobility[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2018:1-7.
[95] PRADEEP P, WEI P. Heuristic approach for arrival sequencing and scheduling for eVTOL aircraft in on-demand urban air mobility[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2018:1-7.
[96] PRADEEP P, WEI P. Energy optimal speed profile for arrival of tandem tilt-wing evtol aircraft with rta constraint[EB/OL]. (2018-05-18)[2020-03-05]. https://www.aere.iastate.edu/~pwei/proceedings/gncc18_vahana.pdf.
[97] PRADEEP P, WEI P. Energy efficient arrival with RTA constraint for urban eVTOL operations[C]//2018 AIAA Aerospace Sciences Meeting.Reston:AIAA, 2018.
[98] PRADEEP P, WEI P. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7):263-277.
[99] BALACHANDRAN S, NARKAWICZ A, MUÑOZ C, et al. A path planning algorithm to enable well-clear low altitude UAS operation beyond visual line of sight[C]//12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), 2017.
[100] LIU S K, ATANASOV N, MOHTA K, et al. Search-based motion planning for quadrotors using linear quadratic minimum time control[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2017:2872-2879.
[101] LIU Z L, KURZHANSKIY A, SENGUPTA R. An energy-based optimal control problem for unmanned aircraft systems flight planning[C]//2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). Piscataway:IEEE Press, 2017:1320-1325.
[102] BAHABRY A, WAN X P, GHAZZAI H, et al. Low-altitude navigation for multi-rotor drones in urban areas[J]. IEEE Access, 2019, 7:87716-87731.
[103] CHAKRABARTY A, STEPANYAN V, KRISHNAKUMAR K S, et al. Real-time path planning for multi-copters flying in UTM-TCL4[C]//AIAA Scitech 2019 Forum. Restona:AIAA, 2019.
[104] BERTRAM J, WEI P. Distributed computational guidance for high-density urban air mobility with cooperative and non-cooperative collision avoidance[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[105] CHEN J. Fast planning for joint routing and charging of autonomous drone delivery system[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[106] KOCHENDERFER M J, HOLLAND J E, CHRYSSANTHACOPOULOS J P. Next-generation airborne collision avoidance system[J]. Lincoln Laboratory Journal, 2012, 19(1):17-33.
[107] PAIELLI R A, ERZBERGER H. Conflict probability estimation for free flight[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3):588-596.
[108] PAIELLI R A, ERZBERGER H. Conflict probability estimation generalized to non-level flight[J]. Air Traffic Control Quarterly, 1999, 7(3):195-222.
[109] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
[110] MUELLER E R, KOCHENDERFER M. Multi-rotor aircraft collision avoidance using partially observable Markov decision processes[C]//AIAA Modeling and Simulation Technologies Conference.Reston:AIAA, 2016.
[111] MUELLER E R, KOCHENDERFER M. Simulation comparison of collision avoidance algorithms for small multi-rotor aircraft[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2016.
[112] ONG H Y, KOCHENDERFER M J. Markov decision process-based distributed conflict resolution for drone air traffic management[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(1):69-80.
[113] THANH H L N N, HONG S K. Completion of collision avoidance control algorithm for multicopters based on geometrical constraints[J]. IEEE Access, 2018, 6:27111-27126.
[114] COTTON W B. Adaptive airborne separation to enable UAM autonomy in mixed airspace[EB/OL]. (2020-01-01)[2020-03-05]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20200000700.pdf.
[115] WEIBEL R E, JOHN H R. Safety considerations for operation of unmanned aerial vehicles in the national airspace system[J]. Transportation, 2005, 37:26-30.
[116] WASHINGTON A, CLOTHIER R A, SILVA J. A review of unmanned aircraft system ground risk models[J]. Progress in Aerospace Sciences, 2017, 95:24-44.
[117] ANCEL E, CAPRISTAN F M, FOSTER J V, et al. Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM)[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2017.
[118] LaCOUR-HARBO A L. Ground impact probability distribution for small unmanned aircraft in ballistic descent[J]. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020:1442-1451.
[119] PRIMATESTA S, RIZZO A, LaCOUR-HARBO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, 2020, 97(3-4):489-509.
[120] LaCOUR-HARBO A. Quantifying risk of ground impact fatalities for small unmanned aircraft[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1-2):367-384.
[121] KIM S H. Third-party risk of mid-air collision between small unmanned aircraft systems[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[122] IPPOLITO C A. Dynamic ground risk mitigation for autonomous small UAS in urban environments[C]//AIAA Scitech 2019 Forum.Reston:AIAA, 2019:0961.
[123] GRAYDON M, NEOGI N A, WASSON K. Guidance for designing safety into urban air mobility:hazard analysis techniques[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[124] GE J H, KACPRZYNSKI G, ROEMER M, et al. Automated contingency management design for UAVs[C]//AIAA 1 st Intelligent Systems Technical Conference. Reston:AIAA, 2004.
[125] PASTOR E, ROYO P, SANTAMARIA E, et al. In-flight contingency management for unmanned aerial vehicles[C]//AIAA Infotech. Reston:AIAA, 2009.
[126] FERN L, RORIE R C, SHIVELY R. UAS contingency management:The effect of different procedures on ATC in civil airspace operations[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2014.
[127] USACH H, TORENS C, ADOLF F, et al. Architectural considerations towards automated contingency management for unmanned aircraft[C]//AIAA Information Systems-AIAA Infotech@Aerospace. Reston:AIAA, 2017.
[128] BACULI J E, IPPOLITO C A. Onboard decision-making for nominal and contingency sUAS flight[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[129] JUNG J, NAG S. Automated management of small unmanned aircraft system communications and navigation contingency[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[130] JUNG J, RIOS J L, DREW C R, et al. Small unmanned aircraft system off-nominal operations reporting system[EB/OL]. (2020-02-20)[2020-03-05]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20200001110.pdf.
[131] GHAZZAI H, MENOUAR H, KADRI A. On the placement of UAV docking stations for future intelligent transportation systems[C]//2017 IEEE 85th Vehicular Technology Conference (VTC Spring).Piscataway:IEEE Press, 2017:1-6.
[132] FADHIL D N. A GIS-Based Analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich:Technical University of Munich, 2018.
[133] DASKILEWICZ M, GERMAN B, WARREN M, et al. Progress in vertiport placement and estimating aircraft range requirements for eVTOL daily commuting[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[134] KOHLMAN L W, PATTERSON M D. System-level urban air mobility transportation modeling and determination of energy-related constraints[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2018.
[135] PATTERSON M D, ANTCLIFF K R, KOHLMAN L W. A proposed approach to studying urban air mobility missions including an initial exploration of mission requirements[C]//75th Annual Forum and Technology Display. Phoenix, AZ:Vertical Flight Society, 2018.
[136] KOHLMAN L W, PATTERSON M D, RAABE B E. Urban air mobility network and vehicle type-modeling and assessment[R]. Moffett Field, CA:NASA Ames Research Center, 2019.
[137] VASCIK P D, JOHN H R. Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
[138] YILMAZ E, WARREN M, GERMAN B. Energy and landing accuracy considerations for urban air mobility vertiport approach surfaces[C]//AIAA Aviation 2019 Forum. Reston:AIAA, 2019.
[139] JUNG J, D'SOUZA S N, JOHNSON M A, et al. Applying required navigation performance concept for traffic management of small unmanned aircraft systems[C]//30th Congress of the International Council of the Aeronautics Sciences, 2016.
[140] TEMPLIN F, JAIN R, SHEFFIELD G, et al. Requirements for an integrated UAS CNS architecture[C]//2017 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway:IEEE Press, 2017:1-25.
[141] PONCHAK D S, TEMPLIN F L, SHEFFIELD G, et al. Reliable and secure surveillance, communications and navigation (RSCAN) for Unmanned Air Systems (UAS) in controlled airspace[C]//2018 IEEE Aerospace Conference.Piscataway:IEEE Press, 2018:1-14.
[142] PONCHAK D S, TEMPLIN F L, SHEFFIELD G, et al. An implementation analysis of communications, navigation, and surveillance (CNS) technologies for unmanned air systems (UAS)[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway:IEEE Press, 2018:1-10.
[143] KERCZEWSKI R J, APAZA R D, DOWNEY A N, et al. Assessing C2 communications for UAS traffic management[C]//2018 Integrated Communications, Navigation, Surveillance Conference (ICNS). Piscataway:IEEE Press, 2018:2D3-1.
[144] PONCHAK D S, TEMPLIN F L, SHEFFIELD G, et al. Advancing the standards for unmanned air system communications, navigation and surveillance[C]//2019 IEEE Aerospace Conference.Piscataway:IEEE Press, 2019:1-9.
[145] LI H X, ZENG H C, DOWNEY A N, et al. Cellular based small unmanned aircraft systems MIMO communications[C]//2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). Piscataway:IEEE Press, 2019:1-6.
[146] BIJJAHALLI S, SABATINI R, GARDI A. GNSS performance modelling and augmentation for urban air mobility[J]. Sensors, 2019, 19(19):4209.
[147] SYD ALI B. Traffic management for drones flying in the city[J]. International Journal of Critical Infrastructure Protection, 2019, 26:100310.
Outlines

/