Solid Mechanics and Vehicle Conceptual Design

Design and analysis of simulated ice with 3D printed sandwich composite material

  • PENG Jinfeng ,
  • WU Dongrun ,
  • CUI Weiyun ,
  • CAI Deng'an ,
  • ZHOU Guangming
Expand
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-07-16

  Revised date: 2020-08-19

  Online published: 2020-09-24

Supported by

National Natural Science Foundation of China (52005256); Natural Science Foundation of Jiangsu Province (BK20190394); Jiangsu Post-doctoral Research Funding Program (2020Z437); Fundamental Research Funds for the Central Universities (NS2019001); Shanghai Aerospace Science and Technology Innovation Fund (SAST2018-071); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract

Airworthiness certification is an indispensable link in the launching process of civil aircraft. According to the airworthiness regulations, the test aircraft are required to complete the flight test with simulated ice, which is a test flight course with class I risk, to examine comprehensive aerodynamics and operational stability of the aircraft. Because of the severe difficulty and high risk of real icing flight tests, it is extremely important to carry out research and design of simulated ice. Taking the natural icing process of a civil aircraft wing as the research object, we first determine the critical ice type of the research aircraft, design the simulated ice structure, and utilize the 3D printed sandwich material to fabricate the simulated composite ice. The aerodynamic load of the ice model under extreme working conditions is then obtained via CFD simulation, and the finite element analysis employed to acquire the damage strength and failure modes of the simulated ice. The effectiveness of the simulation results and, subsequently, the feasibility of the structural design of simulated ice with 3D printed sandwich composite are verified by the quasi-static test.

Cite this article

PENG Jinfeng , WU Dongrun , CUI Weiyun , CAI Deng'an , ZHOU Guangming . Design and analysis of simulated ice with 3D printed sandwich composite material[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 224536 -224536 . DOI: 10.7527/S1000-6893.2020.24536

References

[1] 陈年旭, 桑为民, 陈迎春, 等. 民用飞机结冰研究相关技术及发展[J]. 飞行力学, 2009, 7(5):11-14. CHEN N X, SANG W M, CHEN Y C, et al. Related technology and development of civil aircraft icing research[J]. Flight Dynamics, 2009, 7(5):11-14(in Chinese).
[2] 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12):124085. BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124085(in Chinese).
[3] 张德跃, 王国栋. 警惕!飞机结冰[J]. 江苏航空, 2008(1):12. ZHANG D Y, WANG G D. Be alert! The plane freezes[J]. Jiangsu Aviation, 2008(1):12(in Chinese).
[4] 王洪伟, 李先哲, 宋展. 通用飞机结冰适航验证关键技术及工程应用[J]. 航空学报, 2016, 37(1):335-350. WANG H W, LI X Z, SONG Z. Key airworthiness validation technologies for icing of general aviation aircraft and their engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):335-350(in Chinese).
[5] KIND R J. Ice accretion simulation evaluation test:TR-038[R]. Reston:AIAA, 2007.
[6] 黄文静, 孟建文, 吴密翠. 民用运输类飞机合格审定性能试飞方法研究[J]. 飞行力学, 2001(2):62-64, 68. HUANG W J, MENG J W, WU M C. Study on certification performance flight test methods of civil transport aircraft[J]. Flight Dynamics, 2001(2):62-64, 68(in Chinese).
[7] RAAB C. OHME P, DEILER C. Support of icing flight tests by near real-time data analysis[J]. CEAS Aeronautical Journal, 2016, 8(4):561-577.
[8] BROEREN A P, WHALEN E A, BUSCH G T, et al. Aerodynamic simulation of runback ice accretion[J]. Journal of Aircraft, 2010, 47(3):924-924.
[9] 赵克良, 周峰, 高鼎涵, 等. 复合材料夹层结构模拟冰型设计与分析[J]. 南京航空航天大学学报, 2013, 45(1):33-37. ZHAO K L, ZHOU F, GAO D H, et al. Design and analysis of composite sandwich simulated ice shape[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1):33-37(in Chinese).
[10] MOON S K, YU E T, HWANG J, et al. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(3):223-228.
[11] 李昕. 3D打印技术及其应用综述[J]. 凿岩机械气动工具, 2014(4):36-41. LI X. Summary of 3D printing technology and its application[J]. Rock Drilling Machinery Pneumatic Tools, 2014(4):36-41(in Chinese).
[12] 陈志茹, 夏承东, 李龙, 等. 3D打印技术研究概况[J]. 金属世界, 2018(4):9-14, 19. CHEN Z R, XIA C D, LI L, et al. Research status of 3D printing technology[J]. Metal World, 2018(4):9-14, 19(in Chinese).
[13] 高鼎涵. 试飞用模拟冰型研制改装[D]. 南京:南京航空航天大学, 2011:31-32. GAO D H. Research and refit on artificial ice shape for flight testing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:31-32(in Chinese).
[14] 赵铁英. 严酷结冰气象条件下临界冰形的确定方法[J]. 航空科学技术, 2018, 29(8):48-52. ZHAO T Y. Determination of critical ice shape under inclement ice weather condition[J]. Aeronautical Science & Technology, 2018, 29(8):48-52(in Chinese).
[15] 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3):865-872. QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese).
[16] 于小青, 周光明. 温度变化对复合材料双面搭接接头拉伸强度的影响分析[J]. 玻璃纤维, 2011(3):21-24. YU X Q, ZHOU G M. Effects of temperature change on the tensile strength of double lap joints in composites[J]. Fiber Glass, 2011(3):21-24(in Chinese).
[17] 朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟[J]. 复合材料学报, 2010, 27(6):200-207. ZHU W Y, XU X W. Finite element simulation of low velocity impact damage on composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(6):200-207(in Chinese).
[18] 王裕龙, 许希武, 毛春见. 缝合复合材料层板低速冲击损伤数值模拟[J]. 复合材料学报, 2014, 31(3):715-724. WANG Y L, XU X W, MAO C J. Numerical simulation of low-velocity impact damage on stitched composite laminates[J]. Acta Materiae Compositae Sinica, 2014, 31(3):715-724(in Chinese).
[19] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on the delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese).
[20] FAGGIANI A, FALZON B G. Predicting low-velocity impact damage on a stiffened composite pane[J]. Composites Part A:Applied Science & Manufacturing, 2010, 41(6):737-749.
[21] 周志强. 粘结构件粘结性能的内聚力模型分析[D]. 杭州:浙江大学, 2006:19-33. ZHOU Z Q. Analysis of bonding of adhesively jointing structures with cohesive zone model[D]. Hangzhou:Zhejiang University, 2006:19-33(in Chinese).
[22] 吕超杰. 民机试飞用模拟冰型设计与研究[D]. 南京:南京航空航天大学, 2019:24-27. LV C J. Design and study of simulated ice shape for civil aircraft test flight[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:24-27(in Chinese).
Outlines

/