Electronics and Electrical Engineering and Control

Single station passive localization with phase difference change rate based on MCIS technology

  • XING Huaixi ,
  • ZHANG Yuhui ,
  • CHEN You ,
  • ZHOU Yipeng ,
  • HE Wenbo
Expand
  • 1. College of Aerospace Engineering, Air Force Engineering University, Xi'an 710038, China;
    2. Third Military Representative Office, Air Force Equipment Department, Chengdu 610000, China

Received date: 2020-05-25

  Revised date: 2020-07-02

  Online published: 2020-09-17

Abstract

Aiming at the problems of heavy calculation burden and slow positioning of the Maximum Mikelihood (ML) estimation method for the single-station passive localization via phase difference change rate measurement, this paper proposes a high-precision, low-complexity estimation method using Monte Carlo Importance Sampling (MCIS) technology. According to the Pincus theorem, the approximate global solution of the ML problem is derived. The Importance Sampling (IS) technique is used to construct the importance function that conforms to the Probability Density (PDF) of the Gaussian distribution, which is regarded as the basis for sample selection. The sample set is obtained by inverse transform sampling, and the estimation result of the radiation source position is directly derived by the statistical sample mean. With low sensitivity to the initial estimation error of the target position, the MCIS method is simple and easy to implement with low computational complexity, thereby avoiding the large time consumption of the traditional ML estimation multi-dimensional grid search. Simulation results show that the MCIS algorithm has better positioning accuracy than the Extended Kalman Filter (EKF) and Nonlinear Least Square (NLS) algorithms at the same noise level, and effectively reduces the influence of the initialization estimation error on the positioning accuracy of the iterative algorithm. The influence of the algorithm parameters and different observation conditions on the positioning performance is further discussed and analyzed.

Cite this article

XING Huaixi , ZHANG Yuhui , CHEN You , ZHOU Yipeng , HE Wenbo . Single station passive localization with phase difference change rate based on MCIS technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 324278 -324278 . DOI: 10.7527/S1000-6893.2020.24278

References

[1] 田中成, 刘聪锋. 无源定位技术[M]. 北京:国防工业出版社, 2015:374-379. TIAN Z C, LIU C F. Passive location technology[M]. Beijing:National Defense Industry Press, 2015:374-379(in Chinese).
[2] 王星. 航空电子对抗原理[M]. 北京:国防工业出版社, 2008:136-158. WANG X. Avionics countermeasure principle[M]. Beijing:National Defense Industry Press, 2008:136-158(in Chinese).
[3] 张刚兵. 单站无源定位与跟踪关键技术研究[D]. 南京:南京航空航天大学, 2010. ZHANG G B. Research on key technology for single oserver passive location and tracking[D]. Nanjin:Nanjing University of Aeronauties and Astronauties, 2010(in Chinese).
[4] 刘学. 机载无源定位技术与跟踪算法研究[D]. 哈尔滨:哈尔滨工程大学, 2011. LIU X. The research of technology and tracking algorithms for air-borne passive location[D]. Harbin:Harbin Engineering University, 2011(in Chinese).
[5] 孙仲康, 郭福成, 冯道旺, 等. 单站无源定位跟踪技术[M]. 北京:国防工业出版社, 2008:5-6. SUN Z K, GUO F C, FENG D W, et al. Passive location and tracking technology by single observer[M]. Beijing:National Defense Industry Press, 2008:5-6(in Chinese).
[6] 许志伟, 王运锋, 张小琴. 基于只测向的机载单站定位技术[J].四川大学学报(自然科学版), 2017, 54(2):293-297. XU Z W, WANG Y F, ZHANG X Q. Airborne single-station passive location technology only based on bearing method[J]. Journal of Sichuan University (Natural Science Edition), 2017, 54(2):293-297(in Chinese).
[7] HUANG H, ZHENG Y R. Node localization with AOA assistance in multi-hop underwater sensor networks[J]. Ad Hoc Networks, 2018, 78:32-41.
[8] ZHENG Q, CHEN J Q, YANG R J, et al. Research on technology based on orthogonal multi-station angle measurement method[J]. Infrared Physics & Technology, 2017, 86:202-206.
[9] 许耀伟, 孙仲康. 利用相位变化率对固定辐射源的无源被动定位[J]. 系统工程与电子技术, 1999, 21(3):34-37. XU Y W, SUN Z K. Passive location of fixed emitter using phase rate of change[J]. Systems Engineering and Electronics, 1999, 21(3):34-37(in Chinese).
[10] 王强, 钟丹星, 郭福成, 等. 仅用长基线干涉仪测量相位差变化率的运动单站无源定位方法[C]//第十四届全国信号处理学术年会(CCSP-2009), 2009. WANG Q, ZHONG D X, GUO F C, et al. A single moving observer passive localization method using LBI phase difference changing rate only[C]//2009 The 14th National Annual Conference on Signal Processing(CCSP-2009), 2009(in Chinese).
[11] 郭福成, 贾兴江, 皇甫堪. 仅用相位差变化率的机载单站无源定位方法及其误差分析[J]. 航空学报, 2009, 30(6):1090-1095. GUO F C, JIA X J, HUANGFU K. A single observer passive localization method using phase difference changing rate only and its error analysis[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1090-1095(in Chinese).
[12] 单月晖, 赵巨波, 孙仲康, 等. MGEKF算法在无源定位中的应用[J]. 航天电子对抗, 2003(1):10-13. SHAN Y H, ZHAO J B, SUN Z K, et al. Application of MGEKF algorithm in passive location[J]. Aerospace Electronic Warfare, 2003(1):10-13(in Chinese).
[13] 郭福成, 李宗华, 孙仲康. 无源定位跟踪中修正协方差扩展卡尔曼滤波算法[J]. 电子与信息学报, 2004, 26(6):917-922. GUO F C, LI Z H, SUN Z K. The modified covariance extended Kalman filterin pasive location and tacking[J]. Journal of Electronics & Information Technology, 2004, 26(6):917-922(in Chinese).
[14] 沈文迪, 吴华, 程嗣怡, 等. 基于SMSS-UKF的机载单站无源定位算法[J]. 现代雷达, 2017, 39(4):56-62. SHEN W D, WU H, CHENG S Y, et al. A passive location algorithm for single airborne observer based on SMSS-UKF[J]. Modern Radar, 2017, 39(4):56-62(in Chinese).
[15] 卢虎, 蒋小强, 闵欢. 具有通信约束的分布式SOR多智能体轨迹估计算法[J]. 航空学报, 2019, 40(10):323056. LU H, JIANG X Q, MIN H. Distributed SOR multi-agent trajectory estimation method with communication constraints[J]. Acta Aeronautica et Astronautica Sinica,2019, 40(10):323056(in Chinese).
[16] 郝本建, 王林林, 李赞, 等. 面向TDOA被动定位的定位节点选择方法[J]. 电子与信息学报, 2019, 41(2):462-468. HAO B J, WANG L L, LI Z, et al. Sensor selection method for TDOA passive localization[J]. Journal of Electronics&Information Technology, 2019, 41(2):462-468(in Chinese).
[17] 贺伟, 梁潘. 移动无线传感网络的分布式协作定位的研究[J]. 计算机应用与软件, 2019, 36(4):161-165. HE W, LIANG P. Distributed cooperative localization for mobile wireless sensor network[J]. Computer Applications and Software, 2019, 36(4):161-165(in Chinese).
[18] 张洪铭, 顾晓辉, 邸忆. 基于树形马氏链模型的可靠性分析方法[J]. 航空学报, 2019, 40(5):158-168. ZHANG H M, GU X H, DI Y. Reliablity analysis method based on Tree Markov Chain model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):158-168(in Chinese).
[19] LIU R R, WANG Y L, YIN J X, et al. Passive source localization using importance sampling based on TOA and FOA measurements[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18:1167-1179.
[20] 李雄, 黄建国, 张群飞. 基于重要性抽样的最大似然方位估计方法[J]. 电子学报, 2005, 33(8):1529-1532. LI X, HUANG J G, ZHANG Q F. Maximum likelihood DOA estimator based on importance sampling[J]. Acta Electronica Sinica, 2005, 33(8):1529-1532(in Chinese).
[21] 赵拥军, 赵勇胜, 赵闯. 基于马尔科夫键蒙特卡洛抽样的最大似然时差-频差联合估计算法[J]. 电子与信息学报, 2016, 38(11):2745-2752. ZHAO Y J, ZHAO Y S, ZHAO C. Maximum likelihood TDOA-FDOA estimator using Markov chain monte carlo sampling[J]. Journal of Electronics & Information Technology, 2016, 38(11):2745-2752(in Chinese).
[22] WANG G, CHEN H. An importance sampling method for TDOA-based source localization[J]. IEEE Transactions on Wireless Communications, 2011, 10(5):1560-1568.
[23] YIN J H, WAN Q, YANG S W, et al. A simple and accurate TDOA-AOA localization method using two stations[J]. IEEE Signal Processing Letters, 2016, 23(1):144-148.
[24] 孙霆, 董春曦, 董阳阳, 等. 一种基于观测站数目最小化的TDOA/FDOA无源定位算法[J]. 航空学报, 2019, 40(9):322902. SUN T, DONG C X, DONG Y Y, et al. A TDOA/FDOA passive location algorithm with the minimum number of stations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):322902(in Chinese).
Outlines

/