Special Topic of Electric Aircraft

Noise characteristics of propellers with different blade tips for electric aircraft

  • LIU Yuanqiang ,
  • WANG Yanbing ,
  • XIANG Song ,
  • WANG Mengqi
Expand
  • 1. College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China;
    2. Liaoning General Aviation Academy, Shenyang 110136, China;
    3. Liaoning Ruixiang General Aircraft Manufacturing Co., Ltd., Shenyang 110136, China;
    4. School of Mechanical Engineering, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2020-07-23

  Revised date: 2020-08-18

  Online published: 2020-09-14

Supported by

Natural Science Foundation Guidance Program of Liaoning Province (2019-ZD-0225); University Scientific Research Foundation for the Introduction of Talent Project (19YB08); Projects of Education Department of Liaoning Province (JTY2020161, JYT2020162, JYT19004)

Abstract

To design and select the propeller and minimize the overall noise of electric aircraft, first-order frequency sound pressure values of three kinds of propellers in both the cruise state and climbing state are calculated and analyzed using the LES model. The results show that the noise of the flat tip propeller is the lowest and that of the sharp propeller is the highest. The calculation results are verified via a scale model made and tested in the FL-9 wind tunnel of AVIC Aerodynamics Research Institute. The test results show good agreement with the calculation results, illustrating good engineering application value of the large eddy simulation in propeller noise calculation. Both the calculation and the test results reveal that the flat tip is helpful in electric aircraft propeller noise control.

Cite this article

LIU Yuanqiang , WANG Yanbing , XIANG Song , WANG Mengqi . Noise characteristics of propellers with different blade tips for electric aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 624567 -624567 . DOI: 10.7527/S1000-6893.2020.24567

References

[1] 孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书[J]. 航空科学技术, 2019, 30(11):1-7. SUN X S, CHENG W Y, MU Z D, et al. White paper on the development of electric aircraft[J]. Aviation Science and Technology, 2019, 30(11):1-7(in Chinese).
[2] 李开省. 电动飞机核心技术研究综述[J]. 航空科学技术, 2019, 30(11):8-17. LI K S. Review of research on core technology of electric aircraft[J]. Aeronautical Science and Technology, 2019, 30(11):8-17(in Chinese).
[3] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenge of new energy electric aircraft[J]. Chinese Journal of Aeronautics, 2016, 37(1):57-68(in Chinese).
[4] 王艳冰, 项松. 基于数值分析的通用航空发展研究[J]. 科技经济导刊, 2019, 27(6):3-4. WANG Y B, XIANG S. Research on the development of general aviation based on numerical analysis[J]. Science & Technology Guide, 2019, 27(6):3-4(in Chinese).
[5] 罗东明, 周军, 昂海松. 微型飞行器螺旋桨的气动优化设计[J]. 南京航空航天大学学报, 2003, 35(3):322-325. LUO D M, ZHOU J, ANG H S. Optimized aerodynamic design of micro aircraft propeller[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2003, 35(3):322-325(in Chinese).
[6] 周盛. 航空螺旋桨与桨扇[M]. 北京:国防工业出版社, 1994. ZHOU S. Aviation propeller and propeller fan[M]. Beijing:National Defense Industry Press, 1994(in Chinese).
[7] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006. LIU P Q. Theory and application of air propeller[M]. Beijing:Beihang University Press, 2006(in Chinese).
[8] 龚喜盈, 张玉刚, 宋笔锋, 等. 大尺寸高空螺旋桨气动力性能试验方法研究[J]. 飞行力学, 2014, 32(4):347-350, 355. GONG X Y, ZHANG Y G, SONG B F, et al. Study on aerodynamic performance test methods of large size high altitude propellers[J]. Flight Mechanics, 2014, 32(4):347-350, 355(in Chinese).
[9] 项松, 王吉, 张利国, 等. 一种高效率螺旋桨设计方法[J]. 航空动力学报, 2015, 30(1):136-141. XIANG S, WANG J, ZHANG L G, et al. A high efficiency propeller design method[J]. Chinese Journal of Aerodynamics, 2015, 30(1):136-141(in Chinese).
[10] 刘远强, 项松, 佟刚, 等. 某电动飞机螺旋桨气动特性数值模拟与风洞试验[J]. 飞行力学, 2017, 35(3):81-84. LIU Y Q, XIANG S, TONG G, et al. Numerical simulation of aerodynamic characteristics and wind tunnel test of an electric aircraft propeller[J]. Flight Mechanics, 2017, 35(3):81-84(in Chinese).
[11] WISNIEWSKI C F, BYERLEY A R, HEISER W, et al. The influence of airfoil shape, Reynolds number and chord length on small propeller performance and noise[C]//AIAA Applied Aerodynamics Conference. Reston:AIAA, 2013:2266.
[12] 王阳, 徐国华, 招启军. 基于非结构网格CFD技术的旋翼气动噪声计算方法研究[J]. 空气动力学学报, 2011, 29(5):559-566. WANG Y, XU G H, ZHAO Q J. Research on aerodynamic noise calculation method of rotor based on unstructured grid CFD technology[J]. Chinese Journal of Aerodynamics, 2011, 29(5):559-566(in Chinese).
[13] 伍文华, 杜平安, 陈燕, 等. 大涡模拟在轴流风扇气动噪声仿真中的应用[J]. 机械设计与制造, 2013(1):63-65. WU W H, DU P A, CHEN Y, et al. Application of large eddy simulation in aerodynamic noise simulation of axial fan[J]. Machinery Design and Manufacturing, 2013(1):63-65(in Chinese).
[14] KINGAN M J, PARRY A B. Acoustic theory of the many-bladed contra-rotating propeller:The effects of sweep on noise enhancement and reduction[J]. Journal of Sound and Vibration, 2020, 468:115089.
[15] SAKAMOTO N, KAMⅡRISA H. Prediction of near field propeller cavitation noise by viscous CFD with semi-empirical approach and its validation in model and full scale[J]. Ocean Engineering, 2018, 168:41-59.
[16] 杨通, 胡天翔, 刘沛清. 低雷诺数螺旋桨气动噪声特性实验研究[C]//北京力学会第25届学术年会. 北京:北京力学会,2019:204. YANG T, HU T X, LIU P Q. Experimental study on aerodynamic noise characteristics of propellers with low Reynolds number[C]//The 25th Academic Annual Meeting of Beijing Mechanics Society. Beijing:Beijing Mechanics Society,2019:204(in Chinese).
[17] PEREDA ALBARRÁN M Y, KREIMEIER M, ENDERS W, et al. Noise evaluation of battery powered small aircraft[J]. CEAS Aeronautical Journal:An Official Journal of the Council of European Aerospace Societies, 2020, 11(1):125-135.
[18] SAMOKHIN V F. Semiempirical method for estimating the noise of a propeller[J]. Journal of Engineering Physics and Thermophysics, 2012, 85(5):1157-1166.
[19] 艾延廷, 王泽, 王志, 等. 某型螺旋桨飞机气动噪声降噪研究[J]. 热力透平, 2019, 48(2):113-118. AI Y Y, WANG Z, WANG Z, et al. Research on aerodynamic noise reduction of a propeller plane[J]. Thermal Turbine, 2019, 48(2):113-118(in Chinese).
[20] 曹云飞, 黄向华, 盛龙, 等. 一种提高螺旋桨相同步噪声模型辨识精度的方法[J]. 推进技术, 2018, 39(11):2571-2580. CAO Y F, HUANG X H, SHENG L, et al. Research on aerodynamic noise reduction of a propeller plane[J]. Journal of Propulsion Technology, 2018, 39(11):2571-2580(in Chinese).
Outlines

/