Apart from acoustic damping devices, injection intensity distribution is a main method for the stabilization of liquid rocket engines. Through injection intensity distribution control, propellant combustion moves far away from the node of the main acoustic mode, decreasing the coupled energy driving thermo-acoustic instability and thereby suppressing high frequency combustion instability. Therefore, it is highly significant to build a comprehensive analysis model between injection intensity distribution and instability. For the hypergolic sub-scaled combustor adopting a self-impinging injector and droplet vaporization as the rate-control process, the concentrated combustion zone can be approximately replaced by the area with the highest evaporation rate in analysis of high longitudinal combustion instability. To build a theoretical model for high longitudinal combustion instability considering injection intensity distribution and analysis of its instability suppression capability for injection intensity distribution, a three-dimensional thermo-acoustic equation for the combustion chamber with multiple injectors is introduced for spatial distribution of concentrated combustion response. Finally, the growth rates representing combustion instability of the first longitudinal mode with different injection intensity distributions are computed. Results indicate that the injector with higher injection intensity in the hump zone is more stable than that with lower intensity, with a typical result of 30% gain from injection intensity in the hump zone leading to a 15% reduction in the growth rate.
WANG Guangxu
,
TAN Yonghua
,
CHEN Jianhua
,
ZHUANG Fengchen
,
HONG Liu
,
CHEN Hongyu
,
YANG Baoe
. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(6)
: 124510
-124510
.
DOI: 10.7527/S1000-6893.2020.24510
[1] HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability:NASA SP-194[R]. Washington, D. C.:NASA, 1972.
[2] YANG V, ANDERSON W E. 液体火箭发动机燃烧不稳定性[M]. 张宝炯, 洪鑫, 陈杰, 译. 北京:科学出版社, 2001:110-115. YANG V, ANDERSON W E. Liquid rocket engine combustion instability[M]. ZHANG B J, HONG X, CHEN J, translated. Beijing:Science Press, 2001:110-115(in Chinese).
[3] 汪广旭, 张志涛, 谭永华, 等. 燃烧室声学测量和仿真的误差影响因素分析[J]. 火箭推进, 2020, 46(4):60-66. WANG G X, ZHANG Z T, TAN Y H, et al. Analysis on factors affecting error between acoustic measurement and simulation of combustor chamber[J]. Journal of Rocket Propulsion, 2020, 46(4):60-66(in Chinese).
[4] 尚冬琴, 张峥岳, 严宇, 等. 热吹风条件下带声腔燃烧室阻尼特性研究[J]. 火箭推进, 2018, 44(4):60-67. SHANG D Q, ZHANG Z Y, YAN Y, et al. Study on damping characteristic of combustion chamber with acoustic resonators under hot blowing conditions[J]. Journal of Rocket Propulsion, 2018, 44(4):60-67(in Chinese).
[5] CULICK F E C. Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers[J]. Combustion Science and Technology, 1971, 3(1):1-16.
[6] URBANO A, SELLE L, STAFFELBACH G, et al. Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector liquid rocket engine[J]. Combustion and Flame, 2016, 169:129-140.
[7] FLANDRO G, JACOB E. Finite amplitude nonlinear waves in liquid rocket combustion chambers:AIAA-2008-1003[R]. Reston:AIAA, 2008.
[8] JACOB E, FLANDRO G, RICE T N. The effect of unsteady entropy on combustion instability:AIAA-2012-4084[R]. Reston:AIAA, 2012.
[9] MUSS J A, NGUYEN T V, JOHNSON C W. User's manual for rocket combustor interactive design (ROCCID) and analysis computer program volume I:NASA CR 187109[R]. Washington, D.C.:NASA, 1990.
[10] MUSS J A, NGUYEN T V, JOHNSON C W. User's manual for rocket combustor interactive design (ROCCID) and analysis computer program volume II:NASA CR 187110[R]. Washington, D.C.:NASA, 1990.
[11] 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙:国防科技大学出版社, 1995. ZHUANG F C. Theory, model and applications of spray combustion in LRE[M]. Changsha:National University of Defense Technology Press, 1995.
[12] CROCCO L, CHENG S I. Theory of combustion instability in liquid propellant rocket motors[M]. London:Butterworths Scientific, 1956:94-110.
[13] CASIANO M J. Extensions to the time lag models for practical application to rocket engine stability design[D]. Harrisburg:The Pennsylvania State University, 2010.
[14] 汪广旭, 郭灿琳, 石晓波, 等. 基于时滞模型的纵向燃烧不稳定性分析[J]. 推进技术, 2016, 37(6):1129-1135. WANG G X, GUO C L, SHI X B, et al. Analysis of longitudinal combustion instability based on time lag model[J]. Journal of Propulsion Technology, 2016, 37(6):1129-1135(in Chinese).
[15] DELPLANQUE J P, SIRIGNANO W A. Transcritical liquid oxygen droplet vaporization-Effect on rocket combustion instability[J]. Journal of Propulsion and Power, 1996, 12(2):349-357.
[16] LI L, SUN X F, LIOI C, et al. Effect of azimuthally nonuniform heat release on longitudinal combustion instabilities[J]. Journal of Propulsion and Power, 2016, 33(1):193-203.
[17] SHAW V G, CLABBERS J D, GUTMARK E J. Augmentor combustion instability with COMSOL multi-physics[R]. 2018.
[18] CAMPOS-DELGADO D U, SCHUERMANS B B H, ZHOU K M, et al. Thermoacoustic instabilities:Modeling and control[J]. IEEE Transactions on Control Systems Technology, 2003, 11(4):429-447.
[19] TAMANAMPUDI G M R, ANDERSON W E. Development of combustion instability analysis tool by incorporating combustion response models:AIAA-2015-4165[R]. Reston:AIAA, 2015.
[20] REID R C, PRAUSNITZ J M, POLING B E. The properties of gases and liquids[M]. 8th ed. New York:McGraw-Hill, 2001.
[21] CAMPA G, CAMPOREALE S M. A novel FEM method for prediction thermoacoustic combustion instability[C]//European Comsol Conference, 2009.
[22] 聂万胜, 庄逢辰. 自燃推进剂火箭发动机燃烧不稳定性研究[J]. 推进技术, 2000, 21(4):63-65,76. NIE W S, ZHUANG F C. Hypergolic propellant rocket engine combustion instability studies[J]. Journal of Propulsion Technology, 2000, 21(4):63-65,76(in Chinese).
[23] 聂万胜, 庄逢辰. 自燃推进剂火箭发动机稳态燃烧过程的数值模拟[J]. 推进技术, 1998, 19(5):6-9. NIE W S, ZHUANG F C. Numerical simulation of stable combustion process in earth storable bipropellant rocket engine[J]. Journal of Propulsion Technology, 1998, 19(5):6-9(in Chinese).
[24] INGEBO R D. Drop-size distributions for impinging-jet breakup in air-streams simulating velocity conditions in rocket comubstors:NACA TN4222[R]. Washington, D.C.:NACA, 1958.
[25] STOW S R, DOWLING A P. A time-domain network model for nonlinear thermoacoustic oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3):031502.
[26] ABBE C J, MCLAUGHLIN C W, WEISS R R. Influence of storable propellant liquid rocket design parameters on combustion instability[J]. Journal of Spacecraft and Rockets, 1968, 5(5):584-590.