Fluid Mechanics and Flight Mechanics

RBF data transfer based on physical gradient modification

  • LIU Zhikan ,
  • LIU Shenshen ,
  • LIU Xiao ,
  • ZENG Lei ,
  • DAI Guangyue
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-07-09

  Revised date: 2020-08-18

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (11702315); National Numerical Wind Tunnel Project

Abstract

The radial basis function is an important data transfer method in the multi-physical field coupling calculation of complex shaped aircraft. The distribution of physical quantities of complex aircraft, usually closely related to local flow characteristics, changes drastically in different regions. How to consider the influence of the anisotropic distribution of actual physical quantities in the radial basis function with isotropic characteristics has become the key to improving its accuracy. Aiming at the problem of the radial basis function, this paper proposes a new method for data transfer based on the local physical gradient to adaptively modify the radial basis weight in three directions. Using the hypersonic control surface and wing body combination to verify the feasibility and effect of this method in a single data transfer, we carry out aerodynamic/thermal/structural multi-physical field coupling for the compression corner shape, and compare it with the wind tunnel test results to verify the applicability and reliability of the method in the long-term high-frequency data transmission of the actual coupling problem. The results show that this method can improve the single interpolation effect of Thin Plate Spline(TPS), Multiquadric (MQ) and other global basis functions, and effectively improve the robustness of the MQ method for morphological parameters. The improvement of the compact support basis function after gradient modification has accomplished the effect of the global basis function, such as TPS and MQ, with fewer selected points and achieved better efficiency and accuracy of data transfer. The coupling calculation results obtained by this method are consistent with the experimental data, indicating the availability of this method and the good engineering application prospects in the complex shaped multi-physical field coupling problem.

Cite this article

LIU Zhikan , LIU Shenshen , LIU Xiao , ZENG Lei , DAI Guangyue . RBF data transfer based on physical gradient modification[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 124506 -124506 . DOI: 10.7527/S1000-6893.2020.24506

References

[1] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonicaeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[2] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heatedpanels[J]. Journal of Aircraft, 1988, 25(11):1052-1059.
[3] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学:物理学力学天文学, 2019, 49(11):139-153. GUI Y W. Combined thermal phenomena of hypersonicvehicle[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 2019, 49(11):139-153(in Chinese).
[4] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study ofaerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4):201-209.
[5] WIETING A R, DECHAUMPHAI P, BEY K S, et al. Application of integrated fluid-thermal-structural analysis methods[J]. Thin-Walled Structures, 1991, 11(1-2):1-23.
[6] LOEHNER R, YANG C, CERBAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids[C]//29th AIAA Fluid Dynamics Conference. Reston:AIAA, 1998.
[7] TRAN H, FARHAT C. An integrated platform for the simulation of fluid-structure-thermal interaction problems[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2002.
[8] CULLER A J, MCNAMARA JJ. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738.
[9] 徐敏, 史忠军, 陈士橹. 一种流体-结构耦合计算问题的网格数据交换方法[J]. 西北工业大学学报, 2003, 21(5):532-535. XU M, SHI Z J, CHEN S L. A suitable method for transferring information between CFD and CSD grids[J]. Journal of Northwestern Polytechnical University, 2003, 21(5):532-535(in Chinese).
[10] RENDALL T, ALLEN C. An efficient fluid-structure interpolation and mesh motion scheme for large aeroelastic simulations[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[11] ALLEN C, RENDALL T. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions[C]//25th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2007.
[12] RENDALL T C S, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basisfunctions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559.
[13] 郭中州, 何志强, 赵文文, 等. 高效非结构网格变形与流场插值方法[J]. 航空学报, 2018, 39(12):122411. GUO ZZ, HE Z Q, ZHAO W W, et al. Efficient mesh deformation and flowfield interpolation method for unstructured mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122411(in Chinese).
[14] 刘君, 刘瑜, 陈泽栋. 非结构变形网格和离散几何守恒律[J]. 航空学报, 2016, 37(8):2395-2407. LIU J, LIU Y, CHEN Z D. Unstructured deforming mesh and discrete geometric conservationlaw[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese).
[15] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[16] 魏其, 李春娜, 谷良贤, 等. 一种基于径向基函数和峰值选择法的高效网格变形技术[J]. 航空学报, 2016, 37(7):2156-2169. WEI Q, LI C N, GU L X, et al. An efficient mesh deformation method based on radial basis functions and peak-selectionmethod[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2156-2169(in Chinese).
[17] 刘深深, 桂业伟, 唐伟, 等. 一种多场耦合数据传递新方法[J]. 宇航学报, 2016, 37(1):61-67. LIU SS, GUI Y W, TANG W, et al. A new data transfer method in fluid-thermal-structure coupling problems[J]. Journal of Astronautics, 2016, 37(1):61-67(in Chinese).
[18] 吴宗敏. 散乱数据拟合的模型、方法和理论[M]. 北京:科学出版社, 2007:96-123. WU Z M.Models, methods and theories of scatteres data fitting[M]. Beijing:Science Press, 2007:96-123(in Chinese).
[19] 苏波. 流固交互作用理论、方法研究[D]. 上海:同济大学, 2009:66-84. SU B.Research of theory and method of fluid-structure coupling interaction[D]. Shanghai:Tongji University, 2009:66-84(in Chinese).
[20] BOER A, BIJL H, ZUIJLEN A. Comparing different methods for the coupling of non-matching meshes in fluid-structure interaction computations[C]//17th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2005.
[21] 冯毅, 肖光明, 唐伟, 等. 类X-37运载器气动布局概念设计[J]. 空气动力学学报, 2013, 31(1):94-98. FENG Y,XIAO G M, TANG W, et al. Aerodynamics configuration conceptual design for X-37 analog transporter[J]. Acta Aerodynamica Sinica, 2013, 31(1):94-98(in Chinese).
[22] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11):221165. LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(11):221165(in Chinese).
[23] 中国航空材料手册编委会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:829-835. ChinaAeronautical Materials Handbook Editorial Board. China aeronautical materials handbook[M]. Beijing:China Standard Press, 2002:829-835(in Chinese).
[24] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
Outlines

/