Magnetohydrodynamic heat shield technology has a promising future in its application on hypersonic vehicles. Considering the mechanism of plasma formation, conduction of ionization species and transportation of energy and momentum in electromagnetic flow, which are involved in hypersonic magnetohydrodynamic control, we build the numerical simulation platform of the hypersonic magnetohydrodynamic heat shield by solving high temperature nonequilibrium flow governing equations coupled with Poisson’s equation of electromagnetic fields. Using the configuration of American space shuttle "Columbia" (OV-102) and 5 different magnetic field disposition cases, the application simulation of the magnetohydrodynamic heat shield system on the hypersonic reusable launch vehicle is systematically carried out. The results show that the hypersonic magnetohydrodynamic heat shield simulation platform built in this study has the ability to simulate the aerodynamic thermal environment of complex-shaped aircraft in dipole, solenoid, uniform magnetic fields and superposition magnetic fields, and the validation result is in good agreement with the reference or the flight test data; appropriate magnetic field disposition effectively reduces the surface heat flux of the space shuttle and improves the aerodynamic thermal environment, with the surface heat flux under typical condition decreased by more than 25%; the angle between the local magnetic field and the inflow decides the magnitude and direction of Lorentz force to some extent, exhibiting a strong influence on the effect of the magnetohydrodynamic heat shield system.
[1] 志豪. 美国航天飞机第135次飞行阿特兰蒂斯号终曲航天飞机全部退役[J]. 国际太空, 2011(8):37-41. ZHI H. The 135th flight of American space shuttle[J]. Space International, 2011(8):37-41(in Chinese).
[2] 马野, 许健, 邵秋虎. 后航天飞机时代天地往返运载器发展趋势研究[J]. 中国航天, 2015(3):17-22. MA Y, XU J, SHAO Q H. Development trend of reusable launch vehicle in the post era of space shuttle[J]. Aerospace China, 2015(3):17-22(in Chinese).
[3] 李开, 柳军, 刘伟强. 磁控热防护系统高温流场与电磁场耦合计算方法[J]. 宇航学报, 2017, 38(5):474-480. LI K, LIU J, LIU W Q. Numerical methods of coupling high temperature flow field with electro magnetic field for magnetohydrodynamic heat shield system[J]. Journal of Astronautics, 2017, 38(5):474-480(in Chinese).
[4] 田正雨. 高超声速流动的磁流体力学控制数值模拟研究[D]. 长沙:国防科学技术大学, 2008. TIAN Z Y. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods[D]. Changsha:National University of Defense Technology, 2008(in Chinese).
[5] 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京:南京航空航天大学, 2007. PAN Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
[6] AITHAL S, MUNIPALLI R, SHANKAR V. Performance enhancement of high speed inlets using MHD:ADA422143[R]. Westlake Village:HyPerCom Inc., 2004.
[7] BISEK N, POGGIE J. Exploration of MHD flow control for a hypersonic blunt elliptic cone with an impregnated ablator[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011
[8] BITYURIN V, BOCHAROV A. On efficiency of heat flux mitigation by the magnetic field in MHD entry flow[C]//42nd AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2011
[9] OTSU H, ABE T, KONIGORSKI D. Influence of the Hall effect on the electrodynamic heat shield system for reentry vehicles[C]//36th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2005.
[10] FUJINO T, ISHIKAWA M. Numerical simulation of MHD flow control along super orbital reentry trajectory[C]//44th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2013
[11] GüLHAN A, ESSER B, KOCH U, et al. Experiments on heat-flux mitigation by electromagnetic fields in ionized flows[C]//40th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2009
[12] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析[J]. 物理学报, 2016, 65(6):220-228. LI K, LIU W Q. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles[J]. Acta Physica Sinica, 2016, 65(6):220-228(in Chinese).
[13] 丁明松, 江涛, 刘庆宗, 等. 电导率模拟对高超声速MHD控制影响[J]. 航空学报, 2019, 40(11):123009. DING M S, JIANG T, LIU Q Z, et al. Impact of simulation of electrical conductivity on hypersonic MHD control[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):123009(in Chinese).
[14] 丁明松, 刘庆宗, 江涛, 等. 高温气体效应对高超声速磁流体控制的影响[J]. 航空学报, 2020, 41(2):123278. DING M S, LIU Q Z, JIANG T, et al. Impact of high temperature gas effect on hypersonic magnetohydrodynamic control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):123278(in Chinese).
[15] 丁明松, 江涛, 董维中, 等. 热化学模型对高超声速磁流体控制数值模拟影响分析[J]. 物理学报, 2019, 68(17):20190378. DING M S, JIANG T, DONG W Z, et al. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control[J]. Acta Physica Sinica, 2019, 68(17):20190378(in Chinese).
[16] 丁明松, 江涛, 董维中, 等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8):121030. DING M S, JIANG T, DONG W Z, et al. Numerical simulation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):121030(in Chinese).
[17] PARK C. Review of chemical-kinetic problems of future NASA missions. I-Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3):385-398.
[18] 高铁锁, 董维中, 江涛, 等. 化学模型对数值模拟等离子体流动的影响研究[J]. 宇航学报, 2016, 37(10):1193-1199. GAO T S, DONG W Z, JIANG T, et al. Research on effects of chemical models on numerical simulation of plasma flow[J]. Journal of Astronautics, 2016, 37(10):1193-1199(in Chinese).
[19] 高铁锁, 董维中, 丁明松, 等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报, 2013, 31(5):541-545,553. GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high temperature flowfield[J]. Acta Aerodynamica Sinica, 2013, 31(5):541-545,553(in Chinese).
[20] FUJINO T, TAKAHASHI T. Numerical simulation of Mars entry flight using magnetohydrodynamic parachute effect[C]//47th AIAA Plasmadynamics and Lasers Conference. Reston:AIAA, 2016
[21] 雷银照. 轴对称线圈磁场计算[M]. 北京:中国计量出版社, 1991:1-3, 59-89. LEI Y Z. Axisymmetric coil magnetic field computation[M]. Beijing:China Metrology Publishing House, 1991:1-3, 59-89(in Chinese).
[22] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性[J]. 物理学报, 2018, 67(17):187-196. YAO X, LIU W Q, TAN J G. Analysis of magnetohydrodynamic drag character for hypersonic vehicles[J]. Acta Physica Sinica, 2018, 67(17):187-196(in Chinese).
[23] 陈刚, 张劲柏, 李椿萱. 磁流体流动控制中的磁场配置效率研究[J]. 力学学报, 2008, 40(6):752-759. CHEN G, ZHANG J B, LI C X. Efficiency analysis of magnetic field configuration in MHD flow control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):752-759(in Chinese).
[24] SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5):489-499.