Article

Rapid time-coordination trajectory planning method for multi-glide vehicles

  • LIU Zhe ,
  • LU Haoran ,
  • ZHENG Wei ,
  • WEN Guoguang ,
  • WANG Yidi ,
  • ZHOU Xiang
Expand
  • 1. College of Aerospace Science, National University of Defense Technology, Changsha 410073, China;
    2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China;
    3. College of Science, Beijing Jiaotong University, Beijing 100093, China

Received date: 2020-07-04

  Revised date: 2020-07-26

  Online published: 2020-09-14

Abstract

Based on the requirement of "detection-attack-assessment" integrated mission of the hypersonic vehicle cluster, this paper studies the time-coordination reentry trajectory planning of multi-glide vehicles, proposes the cooperative form and planning scheme of the reentry cluster, and solves the precise control problem of the total reentry flight time based on the improved sequential convex programming algorithm, thereby realizing the time-coordination of the glide cluster. The cooperative scheme of the glide cluster is firstly presented, and the solution model transformed into the sub problems of the determination of coordinated time and trajectory planning with the coordinated time constraint. The terminal time error is added to the penalty function to improve the calculation feasibility of the cooperative trajectory. The flight path angle preset profile is introduced as a soft constraint, with the penalty function and trust region adaptively adjusted to avoid the oscillation problem of trajectory solution and improve the convergence of sequential convex programming algorithm. The effectiveness of the proposed method is verified by the CAV-H model. The simulation results show that the adjustable range of the total reentry time obtained by the convex algorithm is consistent with the pseudospectral method, and the smoothness and calculation time of the trajectory planning results are better than those of the pseudospectral method.

Cite this article

LIU Zhe , LU Haoran , ZHENG Wei , WEN Guoguang , WANG Yidi , ZHOU Xiang . Rapid time-coordination trajectory planning method for multi-glide vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(11) : 524497 -524497 . DOI: 10.7527/S1000-6893.2020.24497

References

[1] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):275-280.
[2] 张友安, 马国欣, 王兴平. 多导弹时间协同制导:一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6):1109-1118. ZHANG Y A, MA G X,WANG X P. Time-cooperative guidance for multi-missiles:A leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1109-1118(in Chinese).
[3] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6):1605-1611. ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1605-1611(in Chinese).
[4] 赵启伦, 陈建, 李清东, 等. 高超武器与常规导弹协同攻击策略可行域研究[J]. 航空学报, 2015, 36(7):2291-2300. ZHAO Q L, CHEN J, LI Q D, et al. Feasible region of hypersonic and ballistic missiles' cooperative attack strategy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2291-2300(in Chinese).
[5] LIANG Z X, YU J L, REN Z, et al. Trajectory planning for cooperative flight of two hypersonic entry vehicles[C]//21 st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017:2251.
[6] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5):321958. FANG K, ZHANG Q Z, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):321958(in Chinese).
[7] YU W B, CHEN W C, JIANG Z G, et al. Analytical entry guidance for coordinated flight with multiple no-fly-zone constraints[J]. Aerospace Science and Technology, 2019, 84:273-290.
[8] LI Z H, HE B, WANG M H, et al. Time-coordination entry guidance for multi-hypersonic vehicles[J]. Aerospace Science and Technology, 2019, 89:123-135.
[9] CHU H Y, LI J, DONG Y, et al. Improved MPSP method-based cooperative Re-entry guidance for hypersonic gliding vehicles[M]//MATEC Web of Conferences, 2017, 114:01002.
[10] WANG X F, ZHANG Y W, LIU D Z, et al. Three-dimensional cooperative guidance and control law for multiple reentry missiles with time-varying velocities[J]. Aerospace Science and Technology, 2018, 80:127-143.
[11] WANG J W, ZHANG R. Terminal guidance for a hypersonic vehicle with impact time control[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8):1790-1798.
[12] PADHI R, KOTHARI M. Model predictive static programming:A computationally efficient technique for suboptimal control design[J]. International Journal of Innovative Computing, Information, and Control, 2009,5(2):399-411.
[13] OZA H B, PADHI R. Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1):153-164.
[14] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):227-241.
[15] JIANG H, AN Z, YU Y N, et al. Cooperative guidance with multiple constraints using convex optimization[J]. Aerospace Science and Technology, 2018, 79:426-440.
[16] 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3):579-587. LI J, JIANG Z Y. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3):579-587(in Chinese).
[17] 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020, 41(5):323606. AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):323606(in Chinese).
[18] MAO Y Q, SZMUK M, ACIKMESE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]//2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway:IEEE Press, 2016:3636-3641.
[19] 王祝, 刘莉, 龙腾, 等. 基于罚函数序列凸规划的多无人机轨迹规划[J]. 航空学报, 2016, 37(10):3149-3158. WANG Z, LIU L, LONG T, et al. Trajectory planning for multi-UAVs using penalty sequential convex pro-gramming[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3149-3158(in Chinese).
[20] 宗群, 李智禹, 叶林奇, 等. 变信赖域序列凸规划RLV再入轨迹在线重构[J]. 哈尔滨工业大学学报, 2020, 52(3):147-155. ZONG Q, LI Z Y, YE L Q, et al. Variable trust region sequential convex programming for RLV online reentry trajectory reconstruction[J]. Journal of Harbin Institute of Technology, 2020, 52(3):147-155(in Chinese).
[21] WANG J B, CUI N G, WEI C Z. Rapid trajectory optimization for hypersonic entry using a pseudospectral-convex algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(14):5227-5238.
[22] SZMUK M, EREN U, ACIKMESE B. Successive convexification for Mars 6-DoF powered descent landing guidance[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2017:1500.
[23] LIU X F, SHEN Z J. Rapid smooth entry trajectory planning for high lift/drag hypersonic glide vehicles[J]. Journal of Optimization Theory and Applications, 2016, 168(3):917-943.
[24] LIU X F, SHEN Z J, LU P. Solving the maximum-crossrange problem via successive second-order cone programming with a line search[J]. Aerospace Science and Technology, 2015, 47:10-20.
[25] WANG Z B, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2603-2615.
[26] PHILLIPS T H.A common aero vehicle (CAV) model, escription, and employment guide[EB/OL].[2013-12-12]. http://www.dtic.Mil/matrics/sbir/sbir041/srch/af031a.doc.
Outlines

/