Material Engineering and Mechanical Manufacturing

Simulation of internal charging characteristics for multi-layer thermal insulation in GEO satellites

  • FENG Na ,
  • JI Qizheng ,
  • ZHANG Xujie ,
  • TANG Xiaojin ,
  • ZHANG Yu ,
  • YANG Yong ,
  • TANG Xu
Expand
  • 1. Beijing Orient Institute for Measurement&Test, Beijing 100086, China;
    2. Army Engineering University of PLA Shijiazhuang Campus, Shijiazhuang 050003, China;
    3. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China

Received date: 2020-06-29

  Revised date: 2020-07-16

  Online published: 2020-09-14

Supported by

Equipment Development Department Key Laboratory Pre-research Foundation (61422050102)

Abstract

Covering more than 60% of the satellite surface, multi-layer thermal insulation is an important medium in restraining the sources of strong electromagnetic environment in space, as well as a necessary thermal control component. Compared with internal components, the satellite surface is directly impacted and acted upon by energetic particles, resulting in a serious electrostatic threat on orbit. The high energy electrons can easily penetrate the milli-meter thin film of the multi-layer insulation, deposit on the internal dielectric material of the insulation and finally form electric fields. According to the composite structure characteristics of multi-layer thermal insulation components, the reasonably optimized internal charged physical model and calculation model are established to simulate the electronic transport process of GEO environmental electrons in typical multi-layer thermal insulation components, and the electric field distribution characteristics of different layers are calculated. The simulation results show that the charging potential of the multi-layer spacer polyester mesh can be as high as 9.7×108 V/m in the worst GEO electron radiation environment, where a risk of discharge exists. The strengths of the electric fields at the grounding edge and the corner of the polyester mesh are the highest and the amplitude of the electric field distortion is huge. The risk of multi-layer charge and discharge mainly comes from the poor grounding caused by the non-intimate contact between the polyester mesh and the reflective screen. It is recommended to increase the contact effect of the polyester mesh and the reflective screen by shortening the stitching distance of the cotton thread to reduce the risk of multi-layer charge and discharge.

Cite this article

FENG Na , JI Qizheng , ZHANG Xujie , TANG Xiaojin , ZHANG Yu , YANG Yong , TANG Xu . Simulation of internal charging characteristics for multi-layer thermal insulation in GEO satellites[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 424469 -424469 . DOI: 10.7527/S1000-6893.2020.24469

References

[1] 孙慧, 徐抒岩, 孙守红, 等. 多层隔热组件的制作工艺[J]. 宇航材料工艺, 2011, 41(3):81-83. SUN H, XU S Y, SUN S H, et al. Processing of multilayer insulation blankets[J]. Aerospace Materials & Technology, 2011, 41(3):81-83(in Chinese).
[2] TONON C, DUVIGNACQ C, TEYSSEDRE G, et al. Degradation of the optical properties of ZnO-based thermal control coatings in simulated space environment[J]. Journal of Physics D:Applied Physics, 2001, 34:124-130.
[3] BITETTI G, MARCHETTI M, MILETI S, et al. Degradation of the surfaces exposed to the space environment[J]. Acta Astronautica, 2007, 60(3):166-174.
[4] KOONS H C, MAZUR J E, SELESNICK R S, et al. The impact of the space environment on space systems:Aerospace Technical Report TR-99(1670)-1[R]. 1999.
[5] 石进峰, 吴清文, 陈立恒, 等. 多层隔热材料飞行试验研究综述[J]. 中国光学, 2013, 6(4):457-469. SHI J F, WU Q W, CHEN L H, et al. Review of flight tests for multi-layer insulator materials[J]. Chinese Journal of Optics, 2013, 6(4):457-469(in Chinese).
[6] GREGORY W, DENNISON J R, AMBERLY E J, et al. Electron energy dependent charging effects of multilayered dielectric materials[J]. IEEE Transactions on Plasma Science, 2013, 41(12):3536-3544.
[7] 左颖萍, 周传君, 朱兴鸿, 等. 卫星多层隔热组件表面等电位控制工艺[J]. 航天器环境工程, 2018, 35(2):195-199. ZUO Y P, ZHOU C J, ZHU X H, et al. Process for surface equipotential control of satellite multilayer insulation[J]. Spacecraft Environment Engineering, 2018, 35(2):195-199(in Chinese).
[8] PAYAN D, REULET R, DIRASSEN B. Elecrtostatic behavior of dielectrics under GEO-like charging space environment simulated in laboratory[C]//Proceedings of 9th Spacecraft Charging Technology Conference, 2005.
[9] XIANG Q Y, CHEN H F, ZONG Q G, et al. Leakage current of grounded dielectrics in electron radiation as a diagnostic method to evaluate the deep charging hazards in space[J]. IEEE Transactions on Nuclear Science, 2016, 63(2):1306-1313.
[10] FERGUSON D C. New frontiers in spacecraft charging[J]. IEEE Transactions on Plasma Science, 2012, 40(2):139-143.
[11] HODGES J L, SIM A M, DEKANY J, et al. In situ surface voltage measurements of dielectrics under electron beam irradiation[J]. IEEE Transactions on Plasma Science, 2014, 42(1):255-265.
[12] WILSON G, DENNISON J R. Approximation of range in materials as a function of incident electron energy[J]. IEEE Transactions on Plasma Science, 2012, 40(2):305-310.
[13] 刘浩, 刘尚合, 苏银涛, 等, 基于网格状ITO薄膜的航天器太阳电池阵静电放电防护[J]. 航天器工程, 2015, 36(10):3494-3500. LIU H, LIU S H, SU Y T, et al. Electrostatic discharge protection of spacecraft solar cell array based on meshed ITO film[J]. Spacecraft Engineering, 2015, 36(10):3494-3500(in Chinese).
[14] 赵欣. 多层隔热组件等效热物性参数的分析[J]. 航天器工程, 2008, 17(4):51-55. ZHAO X. Analysis ofequivalent thermal properties of MLI[J]. Spacecraft Engineering, 2008, 17(4):51-55(in Chinese).
[15] GREEN N W, DENNISON J R. Deep dielectric charging of spacecraft polymers by energetic protons[J].IEEE Transactions on Plasma Science, 2008, 36(5):2482-2490.
[16] 原青云, 王松, 黄欣鑫. 航天器介质盘环结构内带电特性三维仿真分析[J].航空学报, 2019, 40(9):323035. YUAN Q Y, WANG S, HUANG X X. 3-D simulation of internal dielectric charging characteristics of spacecraft dielectric disc structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):323035(in Chinese).
[17] 王松, 易忠, 唐小金, 等. 地球同步轨道环境下外露介质深层带电仿真分析[J]. 高电压技术, 2015, 41(2):687-692. WANG S, YI Z, TANG X J, et al. Analysis of exposed dielectric bulk charging in geosynchronous orbit environment via computer simulation[J]. High Voltage Engineering, 2015, 41(2):687-692(in Chinese).
[18] GREEN N W, DENNISON J R. Deep dielectric charging of spacecraft polymers by energetic protons[J]. IEEE Transactions on Electrical Insulation, 1992, 5(5):944-960.
[19] RODGERS D J, HUNTER K A, WRENN G L. The FLUMIC electron environment model[C]//Proceedings of 8th SCTC, 2003.
[20] SESSLER G M, FIGUEIREDO M T, LEAL FERREIRA G F. Models of charge transport in electron-bream irradiated insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(2):192~202.
[21] 赵宇, 颜吟雪, 刘业楠. 极轨航天器多层外表面充放电效应试验研究[J]. 航天器环境工程,2015, 32(6):616-620. ZHAO Y, YAN Y X, LIU Y N. Test of charging & discharging effects of multilayer insulation for spacecraft in sun-synchronous orbit[J]. Spacecraft Environment Engineering, 2015, 32(6):616-620(in Chinese).
[22] GRISERI1 V, PERRIN C, FUKUNAGA K, et al. Analysis of electron behaviour in polymeric films during electronic irradiation[C]//2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005:645-648.
Outlines

/