The continuum medium hypothesis in the rarefied non-equilibrium flow field has been invalid, and the rarefied non-equilibrium flow is mainly researched around the Boltzmann equation with the Unified Gas-Kinetic Scheme (UGKS) as a representative method. In numerical simulation of the rarefied non-equilibrium flow, the Navier-Stokes (N-S) equation has high efficiency but low accuracy while the UGKS method has high accuracy but low efficiency. In this paper, a Data-driven method for the solution of the Nonlinear Constitutive Relations of the rarefied non-equilibrium flow based on the N-S equation and the UGKS method (DNCR) is proposed. The flow field numerical simulation results of the N-S solver and the UGKS solver are used as the data set. Based on the characteristic parameters of the flow field, an extremely randomized trees algorithm is adopted to nonlinearly correct the linear viscous stress term and heat flux term of the N-S equation. The numerical solution of the rarefied non-equilibrium flow is obtained by solving the N-S macro-conservation equation via coupling nonlinear constitutive relations. A two-dimensional lid-driven cavity case is used to select and tune the characteristic parameters involved in high-dimensional non-linear modeling. Several typical states are selected for the study of the generalization ability of the extremely randomized trees model. Finally, the evaluation of calculation accuracy and efficiency shows the superiority of the method proposed in this paper.
LI Tingwei
,
ZHANG Mang
,
ZHAO Wenwen
,
CHEN Weifang
,
JIANG Lijian
. Machine learning method for correction of rarefied nonlinear constitutive relations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(4)
: 524386
-524386
.
DOI: 10.7527/S1000-6893.2020.24386
[1] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社, 2003. SHEN Q. Rarefied gas dynamics[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[2] XU K, HUANG J. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764.
[3] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J].气体物理,2019,4(4):1-13. LIU S, WANG Y, YUAN R F, et al. Advance in unified methods based on gas-kinetic theory[J].Physics of Gases, 2019,4(4):1-13(in Chinese).
[4] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendon Press, 1994:458.
[5] JEONG S, CHIBA K, OBAYASHI S. Data mining for aerodynamic design space:AIAA-2005-5079[R]. Reston:AIAA, 2005.
[6] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using Kriging model:AIAA-2006-932[R]. Reston:AIAA, 2006.
[7] CHIBA K, OBAYASHI S. Data mining for multidisciplinary design space of regional jet wing[J]. Journal of Aerospace Computing, Information, and Communication, 2007, 4:1019-1036.
[8] 陈杰, 孙刚. 基于SOM神经网络的超临界翼型设计[J].力学季刊, 2011, 32(3):411-417. CHEN J, SUN G. Supercritical airfoil design based on SOM neural network[J]. Chinese Quarterly of Mechanics, 2011, 32(3):411-417(in Chinese).
[9] 司景喆, 孙刚. 基于神经网络的风机叶片叶尖翼型设计[J].力学季刊, 2012, 33(4):672-678. SI J Z, SUN G. Design of wind turbine blade based on SOM[J]. Chinese Quarterly of Mechanics, 2012, 33(4):672-678(in Chinese).
[10] MILANO M, KOUMOUTSAKOS P. Neural network modeling for near wall turbulent flow[J]. Journal of Computational Physics, 2002, 182(1):1-26.
[11] YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[C]//13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012:38-42.
[12] TRACEY B, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[13] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[14] XIAO H, WU J, WANG J, et al. Quantifying and reducing model-form uncertainties in reynolds averaged navier-stokes equations:a data-driven, physics-informed bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136.
[15] EDELING W N, CINNELLA P, DWIGHT R P, et al. Bayesian estimates of parameter variability in the k-ε turbulence model[J]. Journal of Computational Physics, 2014, 258:73-94.
[16] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of nonlinear unsteady aerodynamics:AIAA-1998-4351[R]. Reston:AIAA, 1998.
[17] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of lateral-directional unsteady aerodynamics:AIAA-1999-4012[R]. Reston:AIAA, 1998.
[18] WANG Z, LI J, LAN C E, et al. Estimation of unsteady aerodynamic models from flight test data:AIAA-2001-4017[R]. Reston:AIAA, 2001.
[19] WANG Z, LAN C E, BRANDON J M. Estimation of lateral-directional unsteady aerodynamic models from flight test data:AIAA-2002-4626[R]. Reston:AIAA, 2002.
[20] LAN C E, LI J, YAU W, et al. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling from flight data:AIAA-2002-4804[R]. Reston:AIAA, 2002.
[21] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006,63(1):3-42.
[22] 王爱平, 万国伟, 程志全, 等. 支持在线学习的增量式极端随机森林分类器[J]. 软件学报, 2011,22(9):2019-2074. WANG A P, WAN G W, CHENG Z Q, et al. Incremental learning extremely random forest classifier for online learning[J].Journal of Software, 2011,22(9):2019-2074(in Chinese).
[23] 于普兵. 基于DSMC和气体动理学统一格式的激波结构模拟[C]//第十二届全国物理力学学术会议论文摘要集, 2012. YU P B. Shock structure simulation based on DSMC and unified gas kinetic scheme[C]//The 12th National Conference of Physical Mechanics, 2012(in Chinese).
[24] 赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究[D]. 杭州:浙江大学,2014. ZHAO W W. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow[D]. Hangzhou:Zhejiang University,2014(in Chinese).
[25] 李航.统计学习方法[M].北京:清华大学出版社, 2012. LI H. Statistical learning methods[M]. Beijing:Tsinghua University Press, 2012(in Chinese).
[26] 张振亚, 王进, 程红梅, 等. 基于余弦相似度的文本空间索引方法研究[J].计算机科学, 2005,32(9):160-163. ZHANG Z Y, WANG J, CHENG H M, et al. An approach for spatial index of text information based on cosine similarity[J].Computer Science, 2005,32(9):160-163(in Chinese).
[27] 贾怀勤. 应用统计[M]. 北京:对外经济贸易大学出版社,2010. JIA H Q. Applied Statistics[M]. Beijing:University of International Business and Economics Press, 2010(in Chinese).