Dissertation

Design and motion planning of wheel-legged hexapod robot for planetary exploration

  • QIN Ripeng ,
  • XU Kun ,
  • CHEN Jiawei ,
  • HAN Liangliang ,
  • DING Xilun
Expand
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
    2. Shanghai Aerospace System Engineering Research Institute, Shanghai 210019, China

Received date: 2020-05-18

  Revised date: 2020-06-11

  Online published: 2020-09-14

Supported by

National Natural Science Foundation of China (51775011, 91748201); Beijing Municipal Natural Science Foundation (3192017); SAST (SAST2019-014)

Abstract

A wheel-legged hexapod robot with high symmetries is designed for planetary exploration. With a structure both centrosymmetric in the body horizontal plane and symmetric about its body horizontal plane, this robot can realize two modes of locomotion: wheeled mode and legged mode. In the knee joint, a double parallelogram transmission mechanism is used to avoid the singularity of the traditional parallelogram mechanism, enlarging the motion range of the knee joint. Based on the motion planning in the exponential coordinate on SE(3), an adaptive gait is designed for this wheel-legged hexapod robot. Relying on the force sensor on the feet and inertial measurement unit on the body, this robot using this adaptive gait without the visual sensor and the global map can achieve a stable and continuous walk in an unknown environment. Based on the symmetry of the hexapod robot about the body horizontal plane, the motion planning of the recovery from overturning is designed to meet the need for planetary exploration. Simulations are conducted in the Adams and MATLAB environment. The switch of locomotion modes, the adaptive gait, and the stumble recovery of the wheel-legged hexapod robot are achieved in the simulation.

Cite this article

QIN Ripeng , XU Kun , CHEN Jiawei , HAN Liangliang , DING Xilun . Design and motion planning of wheel-legged hexapod robot for planetary exploration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 524244 -524244 . DOI: 10.7527/S1000-6893.2020.24244

References

[1] 路达, 刘金国, 高海波. 星球表面着陆巡视一体化探测机器人研究进展[J]. 航空学报, 2021, 42(1):523742. LU D, LIU J G, GAO H B. Progress research on integrated exploration robots for planet surface landing and moving[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):523742(in Chinese).
[2] 丁希仑, 徐坤. 星球探测机器人[J]. 航空制造技术, 2013(18):34-39. DING X L, XU K. Robot for planetary exploration[J]. Aeronautical Manufacturing Technology, 2013(18):34-39(in Chinese).
[3] BROOKS R. A robot that walks:Emergent behaviors from a carefully evolved network[J]. Neural Computation, 1989, 1(2):253-262.
[4] FERRELL C L. Many sensors, one robot[C]//Proceedings of the IEEE/RSJ International Conference (IROS'93). Piscataway:IEEE Press, 1993:399-406.
[5] CYNTHIA F. Robust and adaptive locomotion of an autonomous hexapod[C]//Proceedings of From Perception to Action Conference. Piscataway:IEEE Press, 1994:66-77.
[6] MANKINS J C. Modular architecture options for lunar exploration and development[J]. Space Technology, 2002, 1(4):53-64.
[7] BRETT K, HRAND A, YANG C, et al. Lemur:Legged excursion mechanical utility rover[J]. Autonomous Robots, 2001, 11(3):201-205.
[8] JAMES P S, NATHAN J B, BRETT K. Maximizing walking step length for a near omni-directional hexapod robot[C]//The 2004 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Westgate Building:Citeseer, 2004:332-335.
[9] BARES J, HEBERT M. Ambler:An autonomous rover for planetary exploration[J]. IEEE Computer, 1998, 22(6):18-26.
[10] LIU J J, REN X, YAN W, et al. Descent trajectory reconstruction and landing site positioning of Chang'E-4 on the lunar farside[J]. Nature Communications, 2019, 10(1):1-10.
[11] RICHARD A, NED M, HALDUN K, et al. RHex:A biologically inspired hexapod runner[J]. Autonomous Robots, 2001, 11(3):207-213.
[12] KRIS H, TIMOTHY B, JEAN-CLAUDE L, et al. Motion planning for a six-legged lunar robot[M]//Algorithmic Foundation of Robotics VⅡ. Berlin:Springer, 2008:301-316.
[13] WANG Z, DING X, ROVETTA A, et al. Mobility analysis of the typical gait of a radial symmetrical six-legged robot[J]. Mechatronics, 2011, 21(7):1133-1146.
[14] 张志贤, 梁鲁, 果琳丽, 等. 轮腿式可移动载人月面着陆器概念设想[J]. 载人航天, 2016, 22(2):202-209. ZHANG Z X, LIANG L, GUO L L, et al. Conceptual design of manned lunar lander with wheel-legged mobile system[J]. Manned Spaceflight, 2016, 22(2):202-209(in Chinese).
[15] ANTOL J, CALHOUN P, FLICK J, et al. Low cost mars surface exploration:The mars tumbleweed:NASA/TM-2003-212411[R]. Washington, D.C.:NASA, 2003.
[16] CALHOUN P, HARRIS P, RAISZADEH B, et al. Conceptual design and dynamics testing and modeling of a mars tumbleweed rover[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005:247.
[17] SHAH M. Dynamic and aerodynamic modeling of the mars tumbleweed rover[D]. Raleigh:North Carolina State University, 2019:48-52.
[18] XU K, DING X. Typical gait analysis of a six-legged robot in the context of metamorphic mechanism theory[J]. Chinese Journal of Mechanical Engneering, 2013, 26(4):147-159.
[19] 岳富占, 崔平远, 崔祜涛. 月球车定位技术研究综述[J]. 深空探测研究, 2005, 3(2):17-22. YUE F Z, CUI P Y, CUI G T. Review of lunar rover positioning technology[J]. Deep Space Exploration, 2005, 3(2):17-22(in Chinese).
[20] SELIG J M. Geometrical methods in robotics[M]//Monographs in Computer Science. New York:Springer, 1996:9-60.
[21] PARK J. Interpolation and tracking of rigid body orientations[C]//IEEE International Conference on Control Automation and Systems. Piscataway:IEEE Press, 2010:668-673.
Outlines

/