The increasing adoption of titanium alloy equipment in aviation, aerospace, navigation and other harsh service environments requires higher corrosion resistance and better room temperature stress creep performance of component materials. This study investigates the effect of heat treatment on the corrosion resistance and room temperature compressive creep properties of Laser based Additive Manufactured (LAM) TC4 alloy, and modify the parameters of the constitutive equation in the deceleration creep stage with the creep curve. The experimental results demonstrate that the aspect ratio of the α-lamellae markedly decreases after double stage annealing, while slightly increases with solution aging; the size of the α-lamellae slightly decreases after double stage annealing, while markedly increases with solution aging, leading to changes of the material in corrosion resistance, yield strength and critical stress. The corrosion current, the steady-state creep strain rate and the creep strain decrease by 64.92%, 46.31% and 50% respectively after solution aging of the as-deposited state. The corrosion current decreases by 26.14%, and the steady-state creep strain rate and the creep strain increase by 111.20% and 48.68% respectively after double annealing. Compared with the constitutive equation of TC4 alloy prepared by casting and forging process, the modified fitting coefficient demonstrates a higher consistency with the creep curve.
[1] BATISH A, DHURIA G K, SINGH R. Ultrasonic machining of titanium and its alloys:a state of art review and future prospective[J]. International Journal of Machining and Machinability of Materials, 2011, 10(4):326.
[2] 舒畅,张帷,苏艳,等. 海洋大气环境对钛合金TA15断裂韧度的影响[J]. 表面工程,2012,41(6):54-57. SHU C, ZHANG W, SU Y, et al. Effect of marine atmosphere environment on fracture toughness for TA15 titanium alloy[J]. Surface Technology, 2012, 36(10):54-57(in Chinese).
[3] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3):1-4. LIU Q M, ZHANG C H, LIU S F, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3):1-4(in Chinese).
[4] 乔旭. 钛合金增材制造技术的分析和未来趋势[J]. 中国新技术新产品, 2015(23):76. QIAO X. Analysis and future trend of titanium alloy additive manufacturing technology[J]. China New Technologies and New Products, 2015(23):76(in Chinese).
[5] 汤海波, 吴宇, 张述泉, 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019, 11(4):58-63. TANG H B, WU Y, ZHANG S Q, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Netshape Forming Engineering, 2019, 11(4):58-63(in Chinese).
[6] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5):473-478. WANG H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):473-478(in Chinese).
[7] 王叶. 航空国产2024-T351大规格厚板表面防护工艺耐蚀性研究[J]. 科技创业家, 2013(9):59. WANG Y. Corrosion resistance of domestic 2024-T351 heavy plate surface protection technology[J]. Technological Pioneers, 2013(9):59(in Chinese).
[8] 石林. 海军航空用耐蚀合金[J]. 航空维修与工程, 2007(6):54-55. SHI L. Corrosion resistance alloys for naval aviation[J]. Aviation Maintenance & Engineering, 2007(6):54-55(in Chinese).
[9] 葛鹏, 蒲正利. 大功率航空发动机用Ti-6246钛合金的耐蚀性能[J]. 稀有金属快报, 2002(3):27-28. GE P, PU Z L. Corrosion resistance of Ti-6246 alloy for high power aeroengine[J]. Rare Metals Letters, 2002(3):27-28(in Chinese).
[10] 孟龙晖, 杨吟飞, 何宁. 纳米压痕法测量Ti-6Al-4V钛合金室温蠕变应力指数[J]. 稀有金属材料与工程, 2016, 45(3):617-622. MENG L H, YANG Y F, HE N. Nanoindentation measurement of creep stress exponent of Ti-6Al-4V alloy at room temperature[J].Rare Metal Materials and Engineering, 2016, 45(3):617-622(in Chinese).
[11] 张梦园, 顾伯勤, 陶家辉. 工业纯钛TA2的室温压缩蠕变预测模型[J]. 机械工程材料, 2018, 42(12):73-76. ZHANG M Y, GU B Q, TAO J H. Prediction model for room temperature compression creep of commercially pure titanium TA2[J]. Materials for Mechanical Engineering, 2018, 42(12):73-76(in Chinese).
[12] QIU C, KINDI M A, ALADAWI A S, et al. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel[J]. Scientific Reports, 2018, 8(1):7785.
[13] PIAO G, KAIWEN W, HANCHEN Y U, et al. Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy[J]. Acta Metallurgica Sinica, 2018, 54(7):999-1009.
[14] 张治民, 刘海军, 任璐英, 等. 热处理对热等静压态TC4合金及其降温多道次变形微观组织的影响[J]. 稀有金属材料与工程, 2020, 49(4):1372-1378. ZHANG Z M, LIU H J, REN L Y, et al. Effect of heat treatment on microstructure of hot isostatic pressed TC4 alloy and its multi-pass deformation[J]. Rare Metal Materials and Engineering, 2020, 49(4):1372-1378(in Chinese).
[15] ZHAO Z Y, LI L, BAI P K, et al. The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting[J]. Materials (Basel, Switzerland), 2018, 11(8):1318-1330.
[16] LI J P, TAN J Y, ZONG L C. Effect of the heat treatment process on machinability of TC4 alloy[J].Advanced Materials Research 2011, 1375(640):64-68.
[17] 王文博. 固溶时效对激光同轴送粉增材制造TC4组织与性能的影响[D]. 沈阳:沈阳工业大学, 2019. WANG W B, Effect of solution and aging microstructure and properties of TC4 produced by laser coaxial powder feeding[D]. Shenyang:Shenyang University of Technology, 2019(in Chinese).
[18] 杨亚慧. TiZrAlV合金腐蚀行为的研究[D]. 秦皇岛:燕山大学, 2015. YANG Y H. The corrosion behavior of TiZrAlV alloys[D]. Qinhuangdao:Yanshan University, 2015(in Chinese).
[19] 冯晓甜. 送粉式激光增材制备TC4合金微观组织及电化学腐蚀行为研究[D]. 天津:天津工业大学, 2019. FENG X T. Microstructure and electrochemical corrosion behavior of TC4 alloy prepared by powder feeding laser additive manufacturing[D]. Tianjin:Tianjin Polytechnic University, 2019(in Chinese).
[20] 杨慧慧, 杨晶晶, 喻寒琛, 等. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8):127-133. YANG H H, YANG J J, YU H C, et al. Corrosion behavior of selective laser melted TC4 alloy[J]. Journal of Materials Engineering, 2018, 46(8):127-133(in Chinese).
[21] 王雷, 屈平, 李艳青, 等. 钛合金材料蠕变特性的理论与试验研究[J]. 船舶力学, 2018, 22(4):464-474. WANG L, QU P, LI Y Q, et al. Theoretical and experimental investigations for creep properties of titanium alloy materials[J]. Journal of Ship Mechanics, 2018, 22(4):464-474(in Chinese).
[22] ALDEN T H. Theory of mobile dislocation density:application to the deformation of 304 stainless steel[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science, 1987, 18(1):51-62.