The sensitivity analysis of key design parameters of aircraft reveals the relationship between the key design parameters and aircraft characteristics, facilitating the decision making in aircraft preliminary design. Aiming at the key design parameter sensitivity of wide-body commercial aircraft, we establish a deep neural network model based on the features of key design parameters and aircraft characteristics and the coupling relationship among multiple disciplines, taking the key design parameters as input to predict the aircraft characteristics. In this model, multiple input layers, multiple output layers, and multiple blocks of hidden layers are set to simulate the effects of key design parameters on aircraft characteristics and the interactions among different aircraft characteristics. Comparisons with traditional surrogate models reveal that the deep neural network model has higher prediction accuracy and better adaptability to the aircraft characteristics. The proposed model is then used to analyze the sensitivity of the commercial aircraft primary parameters. The analysis results show that a lower maximum takeoff weight and a shorter takeoff balanced field length can be achieved when the wing sweep at 1/4 chord is between 30° to 31.5°. The maximum static thrust of engines at sea level and the wing area have the most significant influence on the direct operation cost, maximum takeoff weight, and other characteristics.
[1] 张帅, 余雄庆. 中短程客机总体参数敏感性分析[J]. 航空学报, 2013, 34(4):809-816. ZHANG S, YU X Q. Sensitivity analysis of primary parameters in preliminary design of a short/medium-haul airliner[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):809-816(in Chinese).
[2] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
[3] FORRESTER A, SOBESTER A, KEANE A. Engineering design via surrogate modelling:a practical guide[M]. Chichester:John Wiley & Sons, 2008:33-59.
[4] 张陈力子, 宋晓玉, 祝雯生, 等. 利用代理模型的客机总体参数敏感性分析[J]. 空军工程大学学报:自然科学版, 2016, 17(3):18-22. ZHANG C L Z, SONG X Y, ZHU W S, et al. Analysis of parameters sensitivity for airliner conceptual design using surrogate-model[J]. Journal of Air Force Engineering University:Natural Science Edition, 2016, 17(3):18-22(in Chinese).
[5] 张伟, 高正红, 周琳, 等. 基于代理模型全局优化的自适应参数化方法研究[J]. 航空学报, 2020, 41(10):123815. ZHANG W, GAO Z H, ZHOU L, et al. Efficient surrogate-based aerodynamic shape optimization with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10):123815(in Chinese).
[6] BOUHLEL M A, BARTOLI N, OTSMANE A, et al. An improved approach for estimating the hyperparameters of the Kriging model for high-dimensional problems through the partial least squares method[J]. Mathematical Problems in Engineering, 2016, 2016:1-11.
[7] 武亮, 左向梅, 邱勇. 基于SVR多学科设计优化代理模型技术研究[J]. 飞行力学, 2020, 38(2):23-28. WU L, ZUO X M, QIU Y. Study of surrogate model technology in multidisciplinary design optimization based on SVR[J]. Flight Dynamics, 2020, 38(2):23-28(in Chinese).
[8] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:The MIT Press, 2016:3-10.
[9] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[10] DENG L, WANG Y, LIU Y, et al. A CNN-based vortex identification method[J]. Journal of Visualization, 2019, 22(1):65-78.
[11] 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2):294-299. CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamic Sinica, 2018, 36(2):294-299(in Chinese).
[12] 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11):322468. ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322468(in Chinese).
[13] 王宇, 余雄庆. 考虑不确定性的飞机总体参数优化方法[J]. 航空学报, 2009, 30(10):1883-1888. WANG Y, YU X Q. Optimization method for aircraft conceptual design under uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1883-1888(in Chinese).
[14] CHAI X, YU X, WANG Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body air-craft[J]. Chinese Journal of Aeronautics, 2018, 31(1):99-106.
[15] GOOGLE. TensorFlow:An end-to-end open source machine learning platform[EB/OL]. (2019-8-1)[2019-8-10]. https://www.tensorflow.org.
[16] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine (ICML-10),2010:807-814.
[17] NEWEY W K. Adaptive estimation of regression models via moment restrictions[J]. Journal of Econometrics, 1988, 38(3):301-339.
[18] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[DB/OL]. arXiv preprint:1502.03167, 2015.
[19] MICROSOFT. Neural Network Intelligence[EB/OL]. (2019-08-05)[2019-09-01]. https://github.com/microsoft/nni.
[20] BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization[C]//Advances in Neural Information Processing Systems, 2011:2546-2554.
[21] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[DB/OL]. arXiv preprint:1207.0580, 2012.
[22] BOUHLEL M A, HWANG J T, BARTOLI N, et al. A Python surrogate modeling framework with derivatives[J]. Advances in Engineering Software, 2019, 135:102662.
[23] 闻新, 李新, 张兴旺, 等. 应用MATLAB实现神经网络[M]. 北京:国防工业出版社, 2015:96-137. WEN X, LI X, ZHANG X W, et al. Application of MATLAB neural network[M]. Beijing:National Defense Industry Press, 2015:96-137(in Chinese).
[24] 杨哲, 李曙林, 周莉, 等. 飞机作战生存力设计参数灵敏度分析[J]. 北京航空航天大学学报, 2013, 39(8):1096-1101. YANG Z, LI S L, ZHOU L, et al. Design parameters sensitivity analysis of aircraft survivability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8):1096-1101(in Chinese).
[25] WILKINSON L. Revising the Pareto chart[J]. The American Statistician, 2006, 60(4):332-334.