Article

Toolpath optimization for mirror milling in singular area

  • ZHANG Shaokun ,
  • BI Qingzhen ,
  • WANG Yuhan
Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-07-31

  Revised date: 2020-08-10

  Online published: 2020-08-31

Supported by

National Natural Science Foundation of China (51875357)

Abstract

In the mirror milling of large thin-walled parts, the discontinuous movement of the rotation axis caused by the singularity of the machine tools will reduce the milling quality and efficiency. To address this problem, this paper analyzes the cause of singularity in machining and proposes a toolpath optimization method in the singular area. First, the kinematics transformation model and the differential motion relationship of the rotation axis are derived for the milling head and support head of the mirror milling system. Based on this, the cause of the singularity and its influence on the machining quality and efficiency are analyzed, and the range of singular area is defined. Analysis shows that within the stroke of the mirror milling system, only the milling head has a singular area, but the support head does not. Then, the toolpath optimization model is established based on the toolpath smoothness index with the constraints of mirror milling. The toolpath passing through the singular area of milling head is optimized by adjusting the toolpath curve in parameter domain of machined surface to get smoother rotary axes movements, improve the machining quality and reduce machining time. Mirror milling experiment validates the effectiveness of the proposed method.

Cite this article

ZHANG Shaokun , BI Qingzhen , WANG Yuhan . Toolpath optimization for mirror milling in singular area[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524591 -524591 . DOI: 10.7527/S1000-6893.2020.24591

References

[1] 高鑫, 李迎光, 刘长青, 等. 基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法[J]. 航空学报, 2015, 36(12):3980-3990. GAO X, LI Y G, LIU C Q, et al. An adjusting method of toolpath on machine for NC manufacture of large thin-walled aeronautical part based on integration of CAM and CNC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3980-3990(in Chinese).
[2] 鲍岩, 董志刚, 朱祥龙, 等. 蒙皮镜像铣削支撑技术的研究现状和发展趋势[J]. 航空学报, 2018, 39(4):021817. BAO Y, DONG Z G, ZHU X L, et al. Review on support technology for mirror milling of aircraft skin[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021817(in Chinese).
[3] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al. Feature-based uncut region toolpath optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2295-2302(in Chinese).
[4] 王昌瑞, 康仁科, 鲍岩, 等. 飞机蒙皮镜像铣加工稳定性分析[J]. 航空学报, 2018, 39(11):422121. WANG C R, KANG R K, BAO Y, et al. Stability analysis of aircraft skin mirror milling process[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):422121(in Chinese).
[5] 王峰, 林浒, 刘峰, 等. 五轴加工奇异区域内的刀具路径优化[J]. 机械工程学报, 2011, 47(19):174-180. WANG F, LIN H, LIU F, et al. Tool path optimization of five-axis machining in singular area[J]. Journal of Mechanical Engineering, 2011, 47(19):174-180(in Chinese).
[6] AFFOUARD A, DUC E, LARTIGUE C, et al. Avoiding 5-axis singularities using tool path deformation[J]. International Journal of Machine Tools and Manufacture, 2004, 44(4):415-425.
[7] YANG J X, ALTINTAS Y. Generalized kinematics of five-axis serial machines with non-singular tool path generation[J]. International Journal of Machine Tools and Manufacture, 2013, 75:119-132.
[8] WAN M, LIU Y, XING W J, et al. Singularity avoidance for five-axis machine tools through introducing geometrical constraints[J]. International Journal of Machine Tools and Manufacture, 2018, 127:1-13.
[9] CASTAGNETTI C, DUC E, RAY P. The domain of admissible orientation concept:A new method for five-axis tool path optimisation[J]. Computer-Aided Design, 2008, 40(9):938-950.
[10] LIN Z W, FU J Z, SHEN H Y, et al. Non-singular tool path planning by translating tool orientations in C-space[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1835-1848.
[11] LIN Z W, FU J Z, SHEN H Y, et al. Improving machined surface texture in avoiding five-axis singularity with the acceptable-texture orientation region concept[J]. International Journal of Machine Tools and Manufacture, 2016, 108:1-12.
[12] 王浏宁. 五轴数控加工奇异点问题研究[J]. 机械工程与自动化, 2012(5):122-124,129. WANG L N. Study on singular point problem in 5-axis NC machining[J]. Mechanical Engineering and Automa-tion, 2012(5):122-124,129(in Chinese).
[13] TAJIMA S, SENCER B. Real-time trajectory generation for 5-axis machine tools with singularity avoidance[J]. CIRP Annals, 2020, 69(1):349-352.
[14] LARTIGUE C, TOURNIER C, RITOU M, et al. High-performance NC for HSM by means of polynomial trajectories[J]. CIRP Annals, 2004, 53(1):317-320.
[15] LU Y A, BI Q Z, ZHU L M. Five-axis flank milling tool path generation with smooth rotary motions[J]. Procedia CIRP, 2016, 56:161-166.
[16] 周金强, 吕洪超, 胡慧莉, 等. S试件加工中奇异点优化算法的研究[J]. 机械制造, 2019, 57(2):78-81. ZHOU J Q, LV H C, HU H L, et al. Research on singularity optimization algorithm in S type specimens machining[J]. Machinery, 2019, 57(2):78-81(in Chinese).
[17] 李冬冬, 张为民, 隋浩楠, 等. 五轴加工奇异问题分析与非线性误差控制[J]. 计算机集成制造系统, 2019, 25(5):1112-1118. LI D D, ZHANG W M, SUI H N, et al. Singularity analysis and non-linear error control of five-axis machining[J]. Computer Integrated Manufacturing Systems, 2019, 25(5):1112-1118(in Chinese).
[18] SØRBY K. Inverse kinematics of five-axis machines near singular configurations[J]. International Journal of Machine Tools and Manufacture, 2007, 47(2):299-306.
[19] MUNLIN M, MAKHANOV S S, BOHEZ E L J. Optimization of rotations of a five-axis milling machine near stationary points[J]. Computer-Aided Design, 2004, 36(12):1117-1128.
[20] 王丹, 陈志同, 陈五一. 五轴加工中非线性误差的检测和处理方法[J]. 北京航空航天大学学报, 2008, 34(9):1003-1006,1091. WANG D, CHEN Z T, CHEN W Y. Detection and control of non-1inear errors in 5-axis machining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9):1003-1006,1091(in Chinese).
[21] CRIPPS R J, CROSS B, HUNT M, et al. Singularities in five-axis machining:cause, effect and avoidance[J]. International Journal of Machine Tools and Manufacture, 2017, 116:40-51.
[22] 王瑞秋. 宽行数控加工理论研究及其在叶片加工中的应用[D]. 北京:北京航空航天大学, 2007:156-189. WANG R Q. Theoretical research on wide-stripe NC machining and its application in blade machining[D]. Beijing:Beihang University, 2007:156-189(in Chinese).
[23] ANOTAIPAIBOON W, MAKHANOV S S, BOHEZ E L J. Optimal setup for five-axis machining[J]. International Journal of Machine Tools and Manufacture, 2006, 46(9):964-977.
[24] YUAN Y, BI Q Z, ZHU L M, et al. Real-time normal measurement and error compensation of curved aircraft surface based on on-line thickness measurement[C]//ICIRA 2017:Intelligent Robotics and Applications. 2017:157-170.
[25] 毕庆贞, 丁汉, 王宇晗. 复杂曲面零件五轴数控加工理论与技术[M]. 武汉:武汉理工大学出版社, 2016:15-51. BI Q Z, DING H, WANG Y H. Theory and technology of five-axis CNC machining of complex surface parts[M]. Wuhan:Wuhan University of Technology Press, 2016:15-51(in Chinese).
[26] ZHANG S K, BI Q Z, JI Y L, et al. Real-time thickness compensation in mirror milling based on modified Smith predictor and disturbance observer[J]. International Journal of Machine Tools and Manufacture, 2019, 144:103427.
Outlines

/