Fluid Mechanics and Flight Mechanics

Simulation of separated flow based on RANS/LES hybrid method

  • CHEN Hao ,
  • YUAN Xianxu ,
  • BI Lin ,
  • HUA Ruhao ,
  • SI Fangfang ,
  • TANG Zhigong
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-11-05

  Revised date: 2020-02-20

  Online published: 2020-08-26

Supported by

State Key Laboratory of Aerodynamics Research Fund(SKLA2019010301)

Abstract

Aircraft maneuvering at high angle of attack and fast pitch leads to large-scale and unsteady vortices in the flow field. Since the traditional Reynolds-Averaged Navier-Stokes (RANS) model cannot accurately simulate the flow field structure, the hybrid RANS/LES model, based on the development trend of international research, is required to accurately simulate the complex separated flow. In this paper, the dual RANS/ Large Eddy Simulatio (LES) hybrid computational model based on zonal mixing and turbulence scale mixing is further developed and applied. Through large static and dynamic turbulent separation flow of typical simplified models, DES-based methods are tested and validated. The correctness and validity of Improved Delayed Detached-Eddy Simulation (IDDES) model in the application to dynamic problems are emphatically studied. The reliability, robustness and accuracy of the numerical simulation method and corresponding calculation software are also tested and verified. Typical examples include supersonic cylindrical bottom flow, transonic square cavity flow and deep stall separation eddy simulation of NACA0015 airfoil. The requirements of three flow types for turbulence simulation methods are provided: steady separated flow, static unsteady separated flow, and dynamic unsteady separated flow. The results show that for static separated flows, DES, DDES and IDDES models are equivalent for static unsteady separated flows, while IDDES models are required for dynamic unsteady separated flows. Meanwhile, the IDDES method developed in this paper can effectively solve the problem of log layer mismatch.

Cite this article

CHEN Hao , YUAN Xianxu , BI Lin , HUA Ruhao , SI Fangfang , TANG Zhigong . Simulation of separated flow based on RANS/LES hybrid method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(8) : 123642 -123642 . DOI: 10.7527/S1000-6893.2020.23642

References

[1] 张涵信. 关于非定常流动的计算问题[C]//第六届全国流体力学会议论文集,2001. ZHANG H X. On the calculation of unsteady flow[C]//Papers of the Sixth National Conference on Fluid Dynamics, 2001(in Chinese).
[2] 张涵信,周恒. 流体力学的基础研究[C]//第六届全国流体力学会议论文集,2001. ZHANG H X, ZHOU H. Basic research of fluid dynamics[C]//Papers of the Sixth National Conference on Fluid Dynamics, 2001(in Chinese).
[3] 周恒. 新世纪对流体力学提出的要求[J]. 自然科学进展,2000,10(6):491-494. ZHOU H. Requirements for hydrodynamics in the new century[J]. Progress in Natural Science, 2000,10(6):491-494(in Chinese).
[4] SPALART P R, JOU W H. Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach[C]//Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES, 1997.
[5] 徐晶磊,高歌,杨焱. 基于当地流动结构的RANS/LES混合模型[J]. 航空学报,2014,35(11):2992-2999. XU J L,GAO G,YANG Y. A RANS/LES hybrid model based on local flow structure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2992-2999(in Chinese).
[6] MORTON S. High Reynolds number DES simulations of vortex breakdown over a 70 degree delta wing[C]//21st Applied Aerodynamics Conference. Reston:AIAA, 2003.
[7] ALLEN R, MENDONCA F. RANS and DES turbulence model predictions of noise on the M219 cavity at M=0.85[J]. International Journal of Aeroacoustics, 2005, 4:135-151.
[8] TRAPIER S, DECK S. Delayed detached-eddy simulation and analysis of supersonic inlet buzz[J]. AIAA Journal, 2008, 46(1):118-131.
[9] FORSYTHE J R, SQUIRES K D. Detached-eddy simulation of the F-15E at high alpha[J]. Journal of Aircraft, 2004, 41(2):193-200.
[10] GRESCHNER B, THIELE F. Prediction of sound generated by a rod-airfoil configuration using EASM DES and the generalised Lighthill/FW-H analogy[C]//12th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2006.
[11] MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[C]//Symposium on the Aerodynamics of Heavy Vehicles:Trucks, Buses and Trains, 2002.
[12] SPALART P R, DECK S. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical & Computational Fluid Dynamics, 2006, 20(3):181-195.
[13] SHUR M L, SPALART P R. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[14] NIKITIN N V, NICOUD F. An approach to wall modeling in large-eddy simulations[J]. Physics of Fluids, 2000, 12(7):1629.
[15] 袁先旭,邓小兵,谢昱飞,等. 超声速湍流流场的RANS/LES混合计算方法研究[J]. 空气动力学学报,2009, 27(6):723-728. YUAN X X, DENG X B, XIE Y F, et al. Research on the RANS/LES hybrid method for supersonic-hypersonic turbulence flow[J]. Acta Aerodynamica Sinica, 2009, 27(6):723-728(in Chinese).
[16] KAWAI S, FUJⅡ K. Compact scheme with filtering for large-eddy simulation of transional boundary layer[J]. AIAA Journal, 2008, 46(3):690-700.
[17] 陈琦,司芳芳,陈坚强,等. RANS/LES在超声速突起物绕流中的应用研究[J]. 航空学报, 2013, 34(7):1531-1537. CHEN Q,SI F F,CHEN J Q,et al. Study of protuberances in supersonic flow with RANS/LES method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1531-1537(in Chinese).
[18] HERRIN J L, DUTTON J C. Base bleed experiments with a cylindrical afterbody in supersonic flow[J]. Journal of Spacecraft & Rockets, 1994,31(6):1021-1028.
[19] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modelling[J]. Notes on Numerical Fluid Mechanics & Multidisciplinary Design, 2009, 103:341-346.
[20] 袁先旭. 非定常流动数值模拟及飞行器动态特性分析研究[D]. 绵阳:中国空气动力研究与发展中心,2002. YUAN X X. Numerical simulation of unsteady flow and analysis of dynamic characteristics of aircraft[D]. Mianyang:China Aerodynamic Research and Development Center, 2002(in Chinese).
[21] VISBAL M R, SHANG J J S. Numerical investigation of the flow structure around a rapidly pitching airfoil:AIAA-1987-1424[R]. Reston:AIAA, 1987.
[22] RUMSEY C L, ANDERSON W K. Some numerical and physical aspects of unsteady Navier-Stokes computations over airfoils using dynamic meshes:AIAA-1988-0329[R]. Reston:AIAA, 1988.
[23] NIU Y Y, LIOU M S. Numerical simulation of dynamic stall using upwind methods with dual time stepping:AIAA-1997-1000[R]. Reston:AIAA, 1997.
[24] LANDON R H. NACA0012, oscillatory and transient pitching:AGARD-R-702[R]. 2000.
[25] PIZIALI R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall:NASA TM-4632[R]. Washington, D.C.:NASA, 1994.
[26] XIAO Z Z, LIU J. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
[27] 刘周,杨云军,周伟江,等. 使用RANS/LES混合方法模拟翼型大迎角动态非定常分离流动[C]//第十四届全国分离流、旋涡和流动控制会议论文集, 2013. LIU Z, YANG Y J, ZHOU W J, et al. Using RANS/LES hybrid method to simulate dynamic unsteady separated flow of airfoil at high angle of attack[C]//Proceedings of the 14th National Conference on Separated Flow, Vortex and Flow Control, 2013(in Chinese).
Outlines

/