Strapdown stellar-inertial guidance of ballistic missiles is a composite guidance method based on inertial guidance supplemented by starlight correction. It can significantly improve the guidance accuracy of missiles. However, since the star sensor is strapdown mounted on the missile body, installation errors will inevitably affect the accuracy of stellar measurement and the precision of composite guidance. Therefore, a composite guidance method for on-line identification and correction of the star sensor installation errors is proposed. The relationship among the observations of the star sensor, the platform misalignment angle, and the star sensor installation error is established. After the active segment of the missile is shut down, six observations are obtained by measuring three independent stars. The misalignment angle and the star sensor installation error can be estimated by the least square method. The optimal correction factor determination equation of the stellar-inertial composite guidance is improved, and the influence of the star sensor installation error is directly eliminated. The simulation results show the effectiveness of the proposed approach in estimating the platform misalignment angle and the star sensor installation error, thus improving the precision of the strapdown stellar-inertial composite guidance.
ZHAO Yi
,
ZHANG Hongbo
,
TANG Guojian
. Strapdown stellar-inertial composite guidance method for ballistic missiles considering star sensor installation errors[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(8)
: 623603
-623603
.
DOI: 10.7257/S1000-6893.2019.23603
[1] 肖称贵. 捷联星光制导方案与误差研究[J]. 导弹与航天运载技术, 1997(4):1-8. XIAO C G. Strapdown celestial guidance scheme and precision analysis[J]. Missles and Space Vehicles, 1997(4):1-8(in Chinese).
[2] 王新龙, 谢佳, 郭隆华. 弹道导弹捷联惯性/星光复合制导系统模型研究[J]. 弹道学报, 2008,20(3):87-91. WANG X L, XIE J, GUO L H. A study on model of strapdown inertial/starlight integrated guidance system for ballistic missiles[J]. Journals of Ballistics, 2008, 20(3):87-91(in Chinese).
[3] 张力军, 张士峰, 钱山. 运载火箭全捷联/星光复合制导研究[J]. 固体火箭技术, 2011, 34(5):553-558. ZHANG L J, ZHANG S F, QIAN S. Study on strapdown stellar-inertial integrated guidance system for launch vehicle[J]. Journal of Solid Rocket Technology, 2011, 34(5):553-558(in Chinese).
[4] SCHMIDT U. ASTRO APS-the next generation Hi-Rel star tracker based on active pixel sensor technology[C]//2005 AIAA Guidance, Navigation, and Control Conference and Exhibit. Reton, VA:AIAA, 2005:743-752.
[5] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学, 2016, 9(1):16-29. LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1):16-29(in Chinese).
[6] LA Q M, CRASSIDIS J L. Precision attitude determination using a multiple model adaptive estimation scheme[C]//2007 IEEE Aerospace Conference, 2007:1-20.
[7] PUNEET S. A new attitude determination approach using split field of view star camera[EB/OL]. https://engineering.tamu.edu/mechanical/academics/degrees/graduate/ms.html.
[8] TRAVIS H D. Attitude determination using star tracker data with Kalman filters[D]. Monterey:Naval Postgraduate School, 2001:2-11.
[9] 王宏力, 何贻洋, 陆敬辉, 等. 星敏感器安装误差的三位置法地面标定方法[J]. 红外与激光工程, 2016, 45(11):327-332. WANG H L, HE Y Y, LU J H, et al. Ground calibration method of installation error for star sensor based on three positions method[J]. Infrared and Laser Engineering, 2016, 45(11):327-332(in Chinese).
[10] 王融, 熊智, 刘建业, 等. 一种星敏感器安装误差标定模型仿真研究[J]. 系统仿真技术,2013,9(4):287-291, 298. WANG R, XIONG Z, LIU J Y, et al. Study on installation error calibration model simulation of star sensor[J]. System Simulation Technology, 2013, 9(4):287-291, 298(in Chinese).
[11] LU J Z, LEI C H, LIANG S F, et al. An all-parameter system-level calibration for stellar-inertial navigation system on ground[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8):2065-2073.
[12] 熊琨, 王春喜, 吴跃, 等. 基于三轴转台的多视场星敏感器标定方法[J]. 红外与激光工程, 2019,48(4):242-247. XIONG K, WANG C X, WU Y, et al. Calibration method for multiple FOV star sensors based on three-axis turntable[J]. Infrared and Laser Engineering, 2019,48(4):242-247(in Chinese).
[13] ZHENG Z C, HAN S L, ZHEGN K F. An eight-position self-calibration method for a dual-axis rotational inertial navigation system[J]. Sensors & Actuators A:Physical, 2015, 232:39-48.
[14] PITTELKAU M E. Kalman filtering for spacecraft system alignment calibration[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6):1187-1195.
[15] YANG Y Q, ZHANG C X, LU J Z. Local observability analysis of star sensor installation errors in a SINS/CNS integration system for near-earth flight vehicles[J]. Sensors, 2017, 17(1):167-179.
[16] NING X L, ZHANG J, GUI M Z, et al. A fast calibration method of the star Sensor installation error based on observability analysis for the tightly coupled SINS/CNS integrated navigation system[J]. IEEE Sensors Journal, 2018, 18(16):6794-6803.
[17] 王欣, 蔡善军, 吴亮华,等. 星敏感器安装误差标定技术研究[J]. 导航定位与授时, 2019, 6(3):125-130. WANG X, CAI S J, WU L H, et al. Research on calibration technology of star sensor installation error angle[J]. Navigation Position & Timing, 2019, 6(3):125-130(in Chinese).
[18] 张超超. 弹道导弹星光/惯性复合制导修正方法研究[D]. 长沙:国防科学技术大学,2016:22-27. ZHANG C C. Study on the hybrid celestial-inertial guidance method of ballistic missile[D]. Changsha:National University of Defense Technology, 2016:22-27(in Chinese).
[19] 张洪波. 空间快速响应发射转移轨道设计与制导方法研究[D]. 长沙:国防科学技术大学, 2009:92-96. ZHANG H B. Research on responsive space lift transfer orbit design and guidance approach[D].Changsha:National University of Defense Technology, 2009:92-96(in Chinese).
[20] 王宏力, 陆敬辉, 崔祥祥. 大视场星敏感器星光制导技术及应用[M]. 北京:国防工业出版社, 2015. WANG H L, LU J H, CUI X X. Stellar guidance technology and application of wide-field star sensor[M]. Beijing:National Defense Industry Press, 2015(in Chinese).