Solid Mechanics and Vehicle Conceptual Design

Containment of aero-engine casing with bolted flanges

  • CAO Zhenzhong ,
  • ZHANG Fan ,
  • ZHANG Dingguo ,
  • YU Yi
Expand
  • 1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. AECC Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2020-07-22

  Revised date: 2020-08-06

  Online published: 2020-08-25

Supported by

National Natural Science Foundation of China (11772158, 11502113)

Abstract

To investigate the blade containment of casings with bolted flanges, finite element simulations and impact tests are carried out with the bolted flange structure cut from the whole casing. LS-DYNA is used to create the finite element models to study the effects of the impact angle, impact position, sleeve and rabbet on the impact resistance of the bolted casing flange structure. The simulation results reveal that the impact angle and impact position have remarkable influence on the impact resistance of the bolted casing flange structure, which is the weakest when the blade impacts on one side of the flange. Adding sleeves or proper rabbets in the bolted casing flange structure increases the impact its resistance. The accuracy and reliability of the simulation results are then validated by the impact resistance tests of the bolted casing flange structure. Analyses of the fracture process of the bolts based on simulation and test results reveal the origin of tensile and shear fractures among the bolts.

Cite this article

CAO Zhenzhong , ZHANG Fan , ZHANG Dingguo , YU Yi . Containment of aero-engine casing with bolted flanges[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 224563 -224563 . DOI: 10.7527/S1000-6893.2020.24563

References

[1] 张燕军, 孙有朝, 曾海军, 等. 转子非包容失效安全性的计算机辅助分析方法[J]. 航空学报, 2013, 34(2):291-300. ZHANG Y J, SUN Y C, ZENG H J, et al. Computer aided analysis for uncontained rotor failure safety[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):291-300(in Chinese).
[2] 宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010, 25(8):1860-1870. XUAN H J, LU X, HONG W R, et al. Review of aero-engine case containment research[J]. Journal of Aerospace Power, 2010, 25(8):1860-1870(in Chinese).
[3] 陆入成, 李先哲, 李洋, 等. 飞机设计中发动机转子碎片非包容性设计[J]. 航空学报, 2016, 37(1):351-363. LU R C, LI X Z, LI Y, et al. Design of uncontained engine rotor fragments failure during airplane design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):351-363(in Chinese).
[4] FRANKENBERGER C E. Small-engine uncontained debris analysis:DOT/FAA/AR-99/7[R]. Washington, D.C.:Federal Aviation Administration, 1999.
[5] FRANKENBERGER C E. Large-engine uncontained debris analysis:DOT/FAA/AR-99/11[R]. Washington, D.C.:Federal Aviation Administration, 1999.
[6] GUNDERSON C O. Study to improve airframe turbine engine rotor blade containment:DOT/FAA/RD-77/44[R]. Washington, D.C.:Federal Aviation Administration, 1977.
[7] PEREIRA J M, LERCH B A. Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications[J]. International Journal of Impact Engineering, 2001, 25(8):715-733.
[8] 龚梦贤, 王旅生, 曹凤兰. 叶片包容性试验研究[J]. 航空动力学报, 1992, 7(2):144-146, 194. GONG M X, WANG L S, CAO F L. Experimental research on blade containment[J]. Journal of Aerospace Power, 1992, 7(2):144-146, 194(in Chinese).
[9] 郑劲松. 高速旋转平板叶片撞击同心圆筒壳体试验的研究[J]. 爆炸与冲击, 2002, 22(3):267-272. ZHENG J S. Experimental studies on rotating platepandle impacting concentric columnar shell[J]. Explosion and Shock Waves, 2002, 22(3):267-272(in Chinese).
[10] 宣海军, 洪伟荣, 吴荣仁. 航空发动机涡轮叶片包容试验及数值模拟[J]. 航空动力学报, 2005, 20(5):762-767. XUAN H J, HONG W R, WU R R. Aero-engine turbine blade containment tests and numerical simulation[J]. Journal of Aerospace Power, 2005, 20(5):762-767(in Chinese).
[11] 范志强, 高德平, 覃志贤, 等. 航空发动机真实机匣的包容性试验[J]. 航空动力学报, 2007, 22(1):18-22. FAN Z Q, GAO D P, QIN Z X, et al. Experimental study of real casing containment[J]. Journal of Aerospace Power, 2007,22(1):18-22(in Chinese).
[12] 于亚彬, 陈伟. 模型机匣/叶片的包容性数值分析[J]. 航空动力学报, 2005, 20(3):429-433. YU Y B, CHEN W. Numerical analysis of the modeled blade/casing containment[J]. Journal of Aerospace Power, 2005,20(3):429-433(in Chinese).
[13] SINHA S K, DORBALA S. Dynamic loads in the fan containment structure of a turbofan engine[J]. Journal of Aerospace Engineering, 2009, 22(3):260-269.
[14] 何庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27(2):295-300. HE Q, XUAN H J, LIU L L. Numerical analysis of real aero-engine first-stage fan blade containment[J]. Journal of Aerospace Power, 2012, 27(2):295-300(in Chinese).
[15] 《航空发动机设计手册》总编委会. 航空发动机设计手册(第十册:涡轮)[M]. 北京:航空工业出版社, 2001:241. Editorial Committee of Design Manual of Aero turbo-engine. Design manual of aero turbo-engine (No.10)[M]. Beijing:Aviation Industry Press, 2001:241(in Chinese).
[16] FAR33. Airworthiness standards:Aircraft engines[S]. United States:Federal Aviation, 1990:1-5.
[17] HRADECKY S. Incident:Martinair MD11 at Aguadilla on Aug 30th 2013, rejected takeoff due to uncontained engine failure[EB/OL]. (2013-09-04)[2020-06-22]. http://avherald.com/h?article=467ebaea&opt=0.
[18] HRADECKY S. Incident:Spirit A319 at Dallas on Oct 15th 2013, contained engine failure[EB/OL]. (2013-10-15)[2020-06-22]. http://avherald.com/h?article=46a0-9b94&opt=0.
[19] HRADECKY S. Accident:Far Eastern MD82 at Taipei on Jul 2nd 2018, uncontained engine failure[EB/OL]. (2018-07-03)[2020-06-22]. http://avherald.com/h?article=4baaa24f&opt=0.
[20] 董本涵, 高鹏飞, 王举. 机匣安装边结构研究[J]. 实验力学, 1996, 11(4):378-385. DONG B H, GAO P F, WANG J. Design of bolted joint of aeroengine casing[J]. Journal of Experimental Mechanics, 1996, 11(4):378-385(in Chinese).
[21] 艾延廷, 来纯强, 郝燕平, 等. 航空发动机安装边螺栓连接密封特性试验[J]. 航空动力学报, 2018, 33(10):2315-2323. AI Y T, LAI CQ, HAO Y P, et al. Experiment on sealing characteristics of bolted flanged connections for aero-engines[J]. Journal of Aerospace Power, 2018, 33(10):2315-2323(in Chinese).
[22] SCHWINGSHACKL C W, PETROV E P. Modeling of flange joints for the nonlinear dynamic analysis of gas turbine engine casings[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12):122504.
[23] DI MAIO D, SCHWINGSHACKL C, SEVER I A. Development of a test planning methodology for performing experimental model validation of bolted flanges[J]. Nonlinear Dynamics, 2016, 83(1-2):983-1002.
[24] BEAUDOIN M A, BEHDINAN K. Analytical lump model for the nonlinear dynamic response of bolted flanges in aero-engine casings[J]. Mechanical Systems and Signal Processing, 2019, 115:14-28.
[25] CZACHOR R P. Unique challenges for bolted joint design in high-bypass turbofan engines[J].Journal of Engineering for Gas Turbines and Power, 2005, 127(2):240-248.
[26] BAI C E, XUAN H J, HE Z K, et al. Research on centrifugal compressor disk containment of auxiliary power unit[J]. Aerospace Science and Technology, 2017, 68:37-45.
[27] LESEUR D. Experimental investigations of material models for Ti-6A1-4V and 2024-T3[R]. Office of Scientific and Technical Information (OSTI), 1999.
[28] 冀建平. 45#钢热粘塑性本构参数的确定及应用[J]. 北京理工大学学报, 2008, 28(6):471-474. JI J P. Determination of the thermo-viscoplastic constitutive relations of 45# steel[J]. Transactions of Beijing Institute of Technology, 2008, 28(6):471-474(in Chinese).
[29] ZHANG T, WU H, FANG Q, et al. UHP-SFRC panels subjected to aircraft engine impact:Experiment and numerical simulation[J]. International Journal of Impact Engineering, 2017, 109:276-292.
[30] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 1999:94-477. Editorial Committee China Aeronautical Materials Hand Book. China aeronautical materials handbook[M]. Beijing:Standards Press of China, 2002:94-477(in Chinese).
[31] CHEN X C, DENG S S, CHEN M. Simulation analysis of striation phenomena in abrasive water jet cutting (AWJC) process of AISI 304 stainless steel[J]. Metalurgija, 2018, 57(1-2):114-116.
[32] SOMASUNDARAM D S, TRABIA M B, O'TOOLE B J. A methodology for predicting high impact shock propagation within bolted-joint structures[J]. International Journal of Impact Engineering, 2014, 73:30-42.
[33] O'TOOLE B, KARPANAN K, FEGHHI M. Experimental and finite element analysis of preloaded bolted joints under impact loading[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th. Reston AIAA, 2006:2024-2032.
[34] CAO Z Z, BRAKE M R W, ZHANG D G. The failure mechanisms of fasteners under multi-axial loading[J]. Engineering Failure Analysis, 2019, 105:708-726.
[35] GRIZA S, DA SILVA M E G, DOS SANTOS S V, et al. The effect of bolt length in the fatigue strength of M24×3 bolt studs[J]. Engineering Failure Analysis, 2013, 34:397-406.
[36] BOUZID A H, NECHACHE A. The modelling of bolted flange joints used with disc springs and tube spacers to reduce relaxation[J]. International Journal of Pressure Vesselsand Piping, 2010, 87(12):730-736.
[37] 王志, 李吉凯, 刘玉. 带止口法兰连接结构刚度特性对结构振动影响[J]. 航空动力学报, 2019, 34(6):1201-1208. WANG Z, LI J K, LIU Y. Stiffness characteristics of flange joint with a snap and its influence on structure vibration[J]. Journal of Aerospace Power, 2019,34(6):1201-1208(in Chinese).
Outlines

/