Dissertation

3D lidar SLAM technology in lunar environment

  • SHANG Tianxiang ,
  • WANG Jingchuan ,
  • DONG Lingfeng ,
  • CHEN Weidong
Expand
  • 1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China

Received date: 2020-04-30

  Revised date: 2020-06-21

  Online published: 2020-08-25

Supported by

National Natural Science Foundation of China (61773261,U1813206);Manned Spaceflight Pre-Research Project of China (060601)

Abstract

Simultaneous Localization And Mapping (SLAM) can realize the localization and navigation of the lunar rover in the unknown complex lunar environment. The lunar surface is composed of undulating terrain such as craters and stones, lacking the salient features of ground such as trees and buildings. Point cloud data with insignificant features will affect the localization accuracy and real-time performance of the lunar rover. This paper proposes a method to extract salient feature point clouds for the lunar surface environment and an incremental optimization algorithm based on the curve localizability estimation. The information matrix calculates the curve localizability index, obtains the uncertainty measurement of the robot pose estimation, and uses the incremental SLAM scheme for optimization to improve the positioning accuracy and real-timeness. The performance of the algorithm is verified by testing in Gazebo (physical simulation platform) simulation scenario.

Cite this article

SHANG Tianxiang , WANG Jingchuan , DONG Lingfeng , CHEN Weidong . 3D lidar SLAM technology in lunar environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 524166 -524166 . DOI: 10.7527/S1000-6893.2020.24166

References

[1] BELL J. Mars exploration:Roving the red planet[J].Nature, 2012:490:34.
[2] BAILEY T, DURRANT-WHYTE H. Simultaneous localization and mapping (SLAM):Part Ⅱ[J]. IEEE Robotics & Automation Magazine, 2006:13:108-117.
[3] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM:A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015:31:1147-1163.
[4] NISTER D, NARODITSKY O, BERGEN J. Visual odometry[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2004.
[5] SHAN T, ENGLOT B. Lego-loam:Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway:IEEE Press, 2018:4758-4765.
[6] WANG J, ZHAO M, CHEN W. MIM_SLAM:A multi-level ICP matching method for mobile robot in large-scale and sparse scenes[J]. Applied Sciences, 2018, 8:2432.
[7] SHANKAR U J, SHYONG W J, CRISS T B, et al. Lunar terrain surface modeling for the ALHAT program[C]//2008 IEEE Aerospace Conference.Piscataway:IEEE Press, 2008:1-10.
[8] 谢洪乐,陈卫东,范亚娴,等. 月面特征稀疏环境下的视觉惯性SLAM算法[J]. 航空学报,2021,42(1):524169. XIE H L, CHEN W D, FAN Y X, et al. Visual-inertial SLAM in the featureless environments of lunar surface[J]. Acta Aeronautica et Astronautica Sinica,2021,42(1):524169(in Chinese).
[9] CHEN Y, TANG J, FENG Z, et al. Possibility of applying SLAM-aided LiDAR in deep space exploration[C]//3rd International Symposium of Space Optical Instruments and Applications.Berlin:Springer, 2017:239-248.
[10] 周易. 基于滤波理论的火星车SLAM算法研究[D].哈尔滨:哈尔滨工业大学, 2017:46-50. ZHOU Y. Simultaneous localization and mapping algorithm for mars rover based on filtering theory[D]. Harbin:Harbin Institute of Technology, 2017:46-50(in Chinese).
[11] 董元元. 火星车同时定位与地图构建方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015:23-25. DONG Y Y. Simultaneous localization and mapping for mars rovers[D]. Harbin:Harbin Institute of Technology, 2015:23-25(in Chinese).
[12] HEWITT R A, MARSHALL J A. Towards intensity-augmented SLAM with LiDAR and ToF sensors[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway:IEEE Press, 2015:1956-1961.
[13] TONG C H, BARFOOT T D, DUPUIS E. 3D SLAM for planetary worksite mapping[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2011:631-638.
[14] HEEMINK A W, VERLAAN M, SEGERS A J. Variance reduced ensemble Kalman filtering[J]. Monthly Weather Review, 2001, 129:1718-1728.
[15] BOGOSLAVSKYI I, STACHNISS C. Fast range image-based segmentation of sparse 3D laser scans for online operation[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2016:163-169.
[16] JOLLIFFE I T, CADIMA J. Principal component analysis:A review and recent developments[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016:374:20150202.
[17] LIU Z, CHEN W, WANG Y, et al. Localizability estimation for mobile robots based on probabilistic grid map and its applications to localization[C]//2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). Piscataway:IEEE Press,2012:46-51.
[18] WANG Y, CHEN W, WANG J, et al. Active global localization based on localizability for mobile robots[J]. Robotica, 2015:33:1609-1627.
[19] KAESS M, RANGANATHAN A, DELLAERT F. iSAM:Incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008:24:1365-1378.
[20] BESL P J, MCKAY N D. Method for registration of 3-D shapes[C]//Sensor Fusion IV:Control Paradigms and Data Structures.International Society for Optics and Photonics, 1992:586-606.
[21] BIBER P, STRAβER W. The normal distributions transform:A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway:IEEE Press, 2003:2743-2748.
[22] OLSON E B. Real-time correlative scan matching[C]//2009 IEEE International Conference on Robotics and Automation.Piscataway:IEEE Press, 2009:4387-4393.
[23] ZHANG J, SINGH S. LOAM:Lidar odometry and mapping in real-time[J]. Robotics:Science and Systems, 2014, 2(9):1-9.
Outlines

/