Fluid Mechanics and Flight Mechanics

Spray characteristics of gliding arc discharge combustion dome of areo-engine combustors

  • ZHANG Lei ,
  • YU Jinlu ,
  • CHEN Yi ,
  • HU Changhuai ,
  • JIANG Yongjian ,
  • TIAN Yu
Expand
  • 1. Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. Army Aviation Research Institute, Beijing 101121, China

Received date: 2020-05-28

  Revised date: 2020-07-08

  Online published: 2020-08-21

Supported by

National Natural Science Foundation of China (91741112, 51776223)

Abstract

A plasma-enhanced combustion dome is developed based on the gliding arc discharge technology in areo-engine combustors, and the effect of the gliding arc plasma on fuel spray performance at different discharge voltages is studied through fuel spray performance experiments. The application of the gliding arc plasma fuel pyrolysis technology shows that the fuel molecules of high-carbon chains are broken into small molecules of low-carbon chains under the impact of high-temperature electrons, leading to decrease in viscosity and increase in atomization performance of the fuel. With the rise of the discharge voltage, the atomization angle of the fuel increases, the SMD average value of fuel atomization decreases, and the uniformity of fuel atomization is improved. When the inlet air flow is 20 m3/h and the excess air coefficient is 0.6, the atomization cone angle of the fuel spray without applying plasma excitation is 43°, the average SMD 93.545 6 μm and the non-uniformity coefficient 0.304. When the discharge voltage reaches 200 V, the atomization cone angle of the fuel spray increases to 75°, the average value of SMD is reduced to 89.690 6 μm, and the non-uniformity coefficient drops to 0.233.

Cite this article

ZHANG Lei , YU Jinlu , CHEN Yi , HU Changhuai , JIANG Yongjian , TIAN Yu . Spray characteristics of gliding arc discharge combustion dome of areo-engine combustors[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 124308 -124308 . DOI: 10.7527/S1000-6893.2020.24308

References

[1] 于锦禄, 黄丹青, 王思博,等. 等离子体点火与助燃技术在航空发动机上的应用[J]. 航空发动机, 2018, 44(3):12-20. YU J L, HUANG D Q, WANG S B, et al. Application of plasma ignition and assisted combustion of aeroen-gine[J]. Aeroengine, 2018, 44(3):12-20(in Chinese).
[2] CHEN J, LI J, YUAN L, et al. Flow and flame charac-teristics of a RP-3 fuelled high temperature rise combus-tor based on RQL[J]. Fuel, 2019, 235:1159-1171.
[3] 金仁瀚, 刘勇, 冯志鹏,等. 双旋流燃烧室单头部油雾特性实验[J]. 航空动力学报, 2014, 29(2):250-258. JIN R H, LIU Y, FENG Z P, et al. Experiment on spray characteristic of single head of dual-swirl cup combus-tor[J]. Journal of Aerospace Power, 2014, 29(2):250-258(in Chinese).
[4] SURESHKUMAR J, ELAYARAJA R, MALLIKARJUNA J M, et al. Transient spray character-istics of air assisted fuel injection:2015-01-0920[R]. Warrendale:SAE International, 2015.
[5] BORETTI A A, JIN S H, ZAKIS G, et al. Experimental and numerical study of an air assisted fuel injector for a D.I.S.I.engine:2007-01-1415[R]. Warrendale:SAE In-ternational, 2007.
[6] 高宏力, 张付军, 刘波澜,等. 空气辅助喷射闪急沸腾喷雾特性试验[J]. 航空动力学报, 2019, 34(1):70-79. GAO H L, ZHANG F J, LIU B L, et al. Experiment on spray characteristics of air-assisted injection under flash boiling conditions[J]. Journal of Aerospace Power, 2019, 34(1):70-79(in Chinese).
[7] 尉曙明. 先进燃气轮机燃烧室设计与研发[M].上海:上海交通大学出版社, 2014:32-75. WEI S M. Advanced gas turbine combustor design and development[M].Shanghai:Publishing House of Shang-hai Jiao Tong University, 2014:32-75(in Chinese).
[8] 张群, 范玮, 徐华胜,等. 低排放航空燃气轮机燃烧技术[J]. 航空制造技术, 2013, 429(9):75-79. ZHANG Q, FAN W, XU H S, et al. Review of low emission combustion technology for gas turbine aeroengine[J]. Aeronautical Manufacturing Technology, 2013, 429(9):75-79(in Chinese).
[9] HEATH C M. Parametric modeling investigation for radially staged low-emission combustion[J]. Journal of Propulsion & Power, 2016, 32(2):500-515.
[10] ZENG M, YUAN W, WANG Y, et al. Experimental and kinetic modeling study of pyrolysis and oxidation of n-decane[J]. Combustion and Flame, 2014, 161(7):1701-1715.
[11] FAN X J, ZHONG F Q, YU G, et al. Catalytic cracking and heat sink capacity of aviation kerosene under super-critical conditions[J]. Journal of Propulsion and Power, 2009, 25(6):1226-1232.
[12] 许敏, 佟斯日古楞, 吴胜奇. 喷嘴孔数及其布置对汽油直喷喷嘴闪沸喷雾-环境气体相互作用影响的研究[J]. 车用发动机, 2016, 224(3):6-13. XU M, TONGSI R G L, WU S Q. Effects of nozzle hole number and distribution on interaction between flash boiling spray and ambient gas of gasoline direct-injection injector[J]. Vehicle Engine, 2016, 224(3):6-13(in Chinese).
[13] 史俊杰, 胡江涛, 耿培林,等. 喷嘴结构参数对喷雾和燃烧特性的影响[J]. 柴油机, 2018, 40(5):1-6. SHI J J, HU J T, GENG P L,et al. Effects of nozzle ge-ometry on spray and combustion characteristics[J]. Die-sel Engine, 2018, 40(5):1-6(in Chinese).
[14] YU J L, WANG S B, YE J F, et al. Ignition characteris-tics of pre-combustion plasma jet igniter[J]. Chinese Physics B, 2019, 28(11):114702-1-114702-11.
[15] YU J L, WANG S B, YE J, et al. Investigation on the jet stiffness characteristics of a novel plasma igniter[J]. In-ternational Journal of Turbo & Jet-Engines, 2019, 10:1-12.
[16] JU Y G, JOSEPH K L,REUTER C B, et al. Plasma assisted low temperature combustion[J]. Plasma Chemis-try & Plasma Processing, 2016, 36(1):85-105.
[17] KHANI M R, DEJBAN G E, GHARBI M, et al. The effects of microwave plasma torch on the cracking of py-rolysis fuel oil feedstock[J]. Chemical Engineering Jour-nal, 2014, 237:169-175.
[18] KHANI M R, BARZOKI S H, YAGHMAEE M S, et al. Investigation of cracking by cylindrical dielectric barrier discharge reactor on the n-hexadecane as a model com-pound[J]. IEEE Transactions on Plasma Science, 2011, 39(9):1807-1813.
[19] PRIETO G, OKUMOTO M, SHIMANO K, et al. Re-forming of heavy oil using nonthermal plasma[J]. IEEE Transactions on Industry Applications, 2001, 37(5):1464-1467.
[20] XIAO Z H, XU D, HAO C, et al. High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6):64-69.
[21] RAHIMPOUR M R, JAHANMIRI A, MOHAMADZADEH S M, et al. Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking:Effect of voltage and cata-lyst configuration[J]. Chemical Engineering Journal, 2013, 219:245-253.
[22] DU C M, YAN J H. Hydrogen from ethanol by a minia-turized plasma reforming system[M]//Hydrogen Genera-tion from Ethanol using Plasma Reforming Technology.Singapore:Springer, 2017.
[23] MAO X Q, ROUSSO A C, CHEN Q, et al. Modeling of ignition enhancement of CH4/O2 mixtures by non-equilibrium excitation of reactants using hybrid nanosec-ond-pulsed discharge and DC discharge[C]//AIAA Aerospace Sciences Meeting.Reston:AIAA, 2018.
[24] WANG S B, YU J L, CHENG W D, et al. Chemical kinetic analysis of plasma excited methane combustion[J]. Chemical Physics Letters, 2019,730:399-406.
[25] 孙进桃, 陈琪, 郭元伟. 非平衡等离子体重整甲烷的动力学机理[J]. 燃烧科学与技术, 2018, 24(2):104-110. SUN J T, CHEN Q, GUO Y W. Kinetic mechanism of methane conversion assisted by non-equilibrium plas-ma[J]. Journal of Combustion Science and Technology, 2018, 24(2):104-110(in Chinese).
[26] MATSUI Y, KAWAKAMI S, TAKASHIMA S, et al. Liquid-phase fuel re-forming at room temperature using nonthermal plasma[J]. Energy & Fuels, 2005, 19(4):1561-1565.
[27] 薄拯, 严建华, 李晓东,等. 滑动弧放电等离子体裂解正己烷实验研究[J]. 环境科学学报, 2006, 26(6):877-881. BO Z, YAN J H, LI X D, et al. The experimental inves-tigation on the decom position of hexane in gliding arc discharge[J]. Acta Scientiae Circumstantiae, 2006, 26(6):877-881(in Chinese).
[28] 何立明, 陈一, 费力,等. 航空发动机燃烧室的旋转滑动弧等离子体燃油裂解头部:201711344497.9[P]. 2018-06-19. HE L M, CHEN Y, FEI L, et al. Rotating gliding arc plasma fuel splitting head in aero engine combustor:China. 201711344497.9[P]. 2018-06-19(in Chinese).
[29] SONG F, WU Y, XU S, et al. N-decane decomposition by microsecond pulsed DBD plasma in a flow reactor[J]. International Journal of Hydrogen Energy, 2019, 44(7):3569-3579.
[30] 钟增培. 有机液体粘度的估算[J]. 广州化工, 1984,4:40-43. ZHONG Z P. Estimation of viscosity of organic liquids[J]. Guangzhou Chemical Industry, 1984, 4:40-43(in Chinese).
[31] 周文元, 金广明, 徐辉. 液体火箭发动机撞击式喷嘴雾化研究及进展[C]//中国航天技术交流会暨空天动力联合会议. 西安:中国航天科技集团公司科技委, 2016. ZHOU W Y, JIN G M, XU H. Research progress of at-omizing liquid impinging nozzle for rocket engine[C]//China Aerospace Technology Exchange and Space Power Joint Conference. Xi'an:Science and Technology Commission of China Aerospace Science and Technolo-gy Corporation, 2016(in Chinese).
Outlines

/