Fluid Mechanics and Flight Mechanics

High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint

  • GAO Chang ,
  • LI Zhengzhou ,
  • HUANG Jiangtao ,
  • HE Yuanyuan ,
  • WU Yingchuan ,
  • LE Jialing ,
  • GUI Feng
Expand
  • 1. Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China

Received date: 2020-07-03

  Revised date: 2020-07-16

  Online published: 2020-08-17

Supported by

Foundation of Science and Technology on Scramjet Laboratory (STS/MY-ZY-2018-007)

Abstract

High-accuracy aerodynamic optimization is an essential approach to the improvement of the aerodynamic performance of hypersonic vehicles. The continuous adjoint equations considering the variations of laminar viscous transport coefficients, boundary conditions and surface sensitivity of aerodynamic force objective functions are derived based on the Navier-Stokes equations. The continuous adjoint solver applicable to hypersonic flows is built and the adjoint convective flux discretized based on a 2-order Roe scheme with entropy corrections. Based on the Free Form Deformation (FFD) methods and the Sequential Quadratic Programming (SQP) algorithm, a high-accuracy adjoint gradient optimization sketch is established, verified and applied to a 2D airfoil and Sanger wing under hypersonic free streams. Results indicate that the adjoint convective scheme possesses strong robustness and low dissipation. The aerodynamic force objective function gradients obtained by the continuous adjoint solver are valid. The lift-drag ratio of the optimized Sanger vehicle increases by 5.0% due to the second shock wave. Verification and optimization confirm the feasibility of the high-accuracy aerodynamic optimization of hypersonic vehicles based the continuous adjoint methods.

Cite this article

GAO Chang , LI Zhengzhou , HUANG Jiangtao , HE Yuanyuan , WU Yingchuan , LE Jialing , GUI Feng . High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(7) : 124490 -124490 . DOI: 10.7527/S1000-6893.2020.24490

References

[1] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260(in Chinese).
[2] 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6):1270-1276. HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276(in Chinese).
[3] 贺旭照, 乐嘉陵. 曲外锥乘波体进气道实用构型设计和性能分析[J]. 航空学报, 2017, 38(6):120690. HE X Z, LE J L. Design and performance analysis of practical curved cone waverider inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120690(in Chinese).
[4] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[5] KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49:197-208.
[6] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese).
[7] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542.
[8] JAMESON A, SHANKARAN S, MARTINELLI L. Continuous adjoint method for unstructured grids[J]. AIAA Journal, 2008, 46(5):1226-1239.
[9] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5):121731. HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121731(in Chinese).
[10] COPELAND S R, PALACIOS F, ALONSO J J. Adjoint-based gradient calculations for projected-force objective functions in viscous, nonequilibrium hypersonic environments[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015:2015-2082.
[11] KLINE H L, ECONOMON T D, ALONSO J J. Mulit-objective optimization of a hypersonic inlet using generalized outflow boundary conditions in the continuous adjoint method[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016:2016-0912.
[12] 宋红超, 李鑫, 季路成. 基于离散型伴随方法的单边膨胀喷管优化设计研究[J]. 工程热物理学报, 2017, 38(9):1849-1854. SONG H C, LI X, JI L C. Research on the optimization of unilateral expansion nozzle based on the discrete adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(9):1849-1854(in Chinese).
[13] 高昌, 张小庆, 贺元元, 等. 连续伴随方法在二维高超声速进气道优化中的应用[J]. 空气动力学学报, 2020, 38(1):21-26. GAO C, ZHANG X Q, HE Y Y, et al. Applications of continuous adjoint method in 2D hypersonic inlet optimization[J]. Acta Aerodynamica Sinica, 2020, 38(1):21-26(in Chinese).
[14] ANDERSON W K, THOMAS J L, VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal, 1986, 24(9):1453-1460.
[15] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[16] SANDERS R, MORANO E, DE DRUGUET M C. Multidimensional dissipation for upwind schemes:Stability and applications to gas dynamics[J]. Journal of Computational Physics, 1998, 145(2):511-537.
[17] KERMANI M, PLETT E. Modified entropy correction formula for the Roe scheme[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[18] ANDERSON W K, VENKATAKRISHNAN V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[J]. Computers & Fluids, 1999, 28(4-5):443-480.
[19] SAAD Y, SCHULTZ M H. GMRES:A generalized minimal residual algorithm for solving nonsy mmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869.
[20] AYACHOUR E H. A fast implementation for GMRES method[J]. Journal of Computational and Applied Mathematics, 2003, 159(2):269-283.
[21] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4):151-160.
[22] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese).
[23] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016:49-53. CHEN S. Gradient based aerodynamic shape optimization design and applications[D]. Xi'an:Northwestern Polytechnical University, 2016:49-53(in Chinese).
[24] 袁亚湘. 非线性优化计算方法[M]. 北京:科学出版社, 2008:201-210. YUAN Y X. Nonlinear optimal progra mming[M]. Beijing:Science Press, 2008:201-210(in Chinese).
[25] WEINGERTNER S. SAENGER-The reference concept of the German Hypersonics Technology Program[C]//5th International Aerospace Planes and Hypersonics Technologies Conference. Reston:AIAA, 1993.
[26] 贺元元, 倪鸿礼, 乐嘉陵. 一体化高超声速飞行器气动-推进性能评估[J]. 实验流体力学, 2007, 21(2):63-67. HE Y Y, NI H L, LE J L. Evaluation of aero-propulsive performance for integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2):63-67(in Chinese).
Outlines

/