Fluid Mechanics and Flight Mechanics

Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows

  • ZHOU Hang ,
  • JIN Zhiguang
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-03-31

  Revised date: 2020-07-23

  Online published: 2020-08-17

Abstract

The traditional osculating axisymmetric flow theory is widely used in the inverse design of generalized shock waves under the condition of uniform incoming flows. To solve the inverse problem of the three-dimensional generalized shock wave design under nonuniform incoming flows, a novel method, Micro Osculating Axisymmetric flow (MOA) method, is proposed in this paper. The method constructs a series of micro osculating planes along the shock wave surface in both spanwise and streamwise directions. Actual three-dimensional flows are then approximated by two-dimensional axisymmetric flows in each micro osculating plane. Thus, the new method breaks the restriction of no lateral velocities or lateral pressure gradients in the traditional method. To validate its correctness and feasibility, an internal conical shock wave at a 4° angle of attack, and the other one in an external conical flow of a 10° cone half-angle are reconstructed by the novel method. The CFD results of the two cases indicate that the three-dimensional shock wave geometries completely match the prescribed ones, thereby realizing the control of the three-dimensional shock wave geometry under nonuniform incoming flows. The MOA method has significant application prospects in the field of air-breathing hypersonic forebody/inlet integrated design.

Cite this article

ZHOU Hang , JIN Zhiguang . Micro osculating axisymmetric flow method for 3D shock wave design under nonuniform flows[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 124035 -124035 . DOI: 10.7527/S1000-6893.2020.24035

References

[1] POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines:The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6):1170-1176.
[2] FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1):27-58.
[3] HANEY J W, BEAULIEU W D. Waverider inlet integration issues:AIAA-1994-0383[R]. Reston:AIAA, 1994.
[4] DING F, LIU J, SHEN C B, et al. An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles[J]. Acta Astronautica, 2018, 152(9):639-656.
[5] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody:AIAA-2009-7421[R]. Reston:AIAA, 2009.
[6] HE X Z, ZHOU Z, QIN S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6):1582-1590.
[7] EGGERS A J, ASHLEY H, SPRINGER G S. Hypersonic waverider configurations from the 1950's to the 1990's[C]//Proceedings of the 1 st International Hypersonic Waverider Symposium, 1990.
[8] LUNAN D. Waverider, a revised chronology:AIAA-2015-3529[R]. Reston:AIAA, 2015.
[9] BILLIG F S, KOTHARI A P. Streamline tracing:technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471.
[10] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(9):521-528.
[11] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Archive of Applied Mechanics,1968, 37(1):56-72.
[12] RASMUSSEN N L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[13] TAKASHIMA N, LEWIS M J. Wedge-cone waverider configuration for engine-airframe integration[J]. Journal of Aircraft, 1995, 32(5):1142-1144.
[14] CUI K, ZHAO D X, YANG G W. Waverider configurations derived from general conical flowfields[J]. Acta Mechanica Sinica, 2007, 23(3):247-255.
[15] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//Proceeding of the 1 st International Hypersonic Waverider Symposium, 1990.
[16] SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8.
[17] JONES K D, SOBIECZKY H, SEEBASS A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6):957-963.
[18] CHAUFFOUR M, LEWIS M J. Corrected waverider design for inlet applications:AIAA-2004-3405[R].Reston:AIAA, 2004.
[19] CLEGG J, RODI P E, MEADE A. Validation of a crossflow velocity model between waverider flowfield planes:AIAA-2019-2813[R]. Reston:AIAA, 2019.
[20] QIAO W Y, YU A Y, WANG Y H. An inverse design method for non-uniform flow inlet with a given shock wave[J]. Acta Mathematicae Applicatae Sinica, English Series, 2019, 35(2):287-304.
[21] ZHENG X G, LI Y Q, ZHU C X, et al. Multiple osculating cones' waverider design method for ruled shock surface[J]. AIAA Journal, 2020, 58(2):854-866.
[22] CHEN L L, DENG X L, GUO Z, et al. A Novel approach for design and analysis of volume-improved osculating-cone waveriders[J]. Acta Asctonautica, 2019, 161(2):430-445.
[23] LIU J, LIU Z, WEN X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162(5):160-167.
[24] LIU Z, LIU J, DING F. Influence of surface pressure distribution of basic flowfield on osculating axisymmetric waverider[J]. AIAA Journal, 2019, 57(10):4560-4568.
[25] O'BRIEN T F, LEWIS M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123.
[26] WANG J F, LIU C Z, PENG B. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151(6):504-510.
[27] YOU Y C, LIANG D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China Series E:Technological Sciences, 2009, 52(7):2017-2028.
[28] ZHAO Z T, HUANG W, LI S B, et al. Variable mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147(4):163-174.
[29] HUANG G P, ZUO F Y, Qiao W Y. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration[J]. Aerospace Science and Technology, 2018, 74(1):160-172.
[30] ZUCROW M J, HOFFMAN J D. Gas dynamics, Vol.2[M]. New York:John Wiley & Sons, 1976:191-192.
[31] RANSOM V H, HOFFMAN J D, THOMSON H D. A second-order bicharacteristics method for three-dimensional, steady, supersonic flow[J]. AIAA Journal, 1972, 10(12):1573-1581.
[32] 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J].航空学报, 2018, 39(10):122078. QIAO W Y, YU A Y, YANG D W, et al. Integrated design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122078(in Chinese).
[33] 张文浩,柳军,丁峰.内转式进气道/冯·卡门乘波体一体化设计方法[J].航空学报, 2020, 41(3):123502. ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet and Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123502(in Chinese).
[34] 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015, 36(1):289-301. LI Y Z, ZHANG K Y. Integrated design of forebody and inlet based on external and internal conical basic flow field with controlled Mach number distribution surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301(in Chinese).
Outlines

/