Review

Fatigue evolution and anti-fatigue mechanism of surface characteristics induced by deep rolling: A review

  • HAN Kunpeng ,
  • ZHANG Dinghua ,
  • YAO Changfeng ,
  • TAN Liang ,
  • ZHOU Zheng
Expand
  • 1. Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Engineering Research Center of Advanced Manufacturing Technology for Aero Engine, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-05-26

  Revised date: 2020-05-29

  Online published: 2020-08-07

Supported by

National Natural Science Foundation of China (91860000, 91860206, 51875472, 51905440); National Science and Tech-nology Major Project (2017-VII-0001-0094); National Key Research and Development Plan in Shaanxi Province of China (2019ZDLGY02-03)

Abstract

The deep rolling strengthening process, as one of the mechanical surface treatment technologies, can effectively improve the fatigue performance, wear resistance, corrosion resistance and damage tolerance of materials, and has been used in surface modification of aeroengine blades. This article first introduces the basic principle and advantages of the deep rolling strengthening process. Considering the important influence of the evolution of surface characteristics on fatigue performance, a growing number of scholars attach increasing importance to this problem and extensive studies have been carried out. We comprehensively review the fatigue evolution and anti-fatigue mechanism of the surface characteristics (residual stress, microhardness and microstructure), and the progress in fatigue life prediction of the deep rolling strengthening process. Moreover, a horizontal comparative analysis with the current research of other technologies is performed and the deficiencies in the current research of the deep rolling strengthening process are summarized. Finally, future research and development direction of the deep rolling strengthening process are prospected.

Cite this article

HAN Kunpeng , ZHANG Dinghua , YAO Changfeng , TAN Liang , ZHOU Zheng . Fatigue evolution and anti-fatigue mechanism of surface characteristics induced by deep rolling: A review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(10) : 524302 -524302 . DOI: 10.7527/S1000-6893.2020.24302

References

[1] 高玉魁. 表面完整性理论与应用[M]. 北京:化学工业出版社, 2014:1-11. GAO Y K. Theory and application of surface integrity[M]. Beijing:Chemical Industry Press, 2014:1-11(in Chinese).
[2] DAVIM J P. Surface integrity in machining[M]. London:Springer, 2010:1-35.
[3] 高玉魁, 刘天琦, 殷源发, 等. 表面完整性对30CrMnSiNi2A钢疲劳极限的影响[J]. 航空材料学报, 2002, 22(2):21-23. GAO Y K, LIU T Q, YIN Y F, et al. Influence of surface integrality on fatigue limit for 30CrMnSiNi2A steel[J]. Journal of Aeronautical Materials, 2002, 22(2):21-23(in Chinese).
[4] YAO C F, LIN J N, WU D X, et al. Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts[J]. Chinese Journal of Aeronautics, 2018, 31(4):826-836.
[5] WU D X, ZHAND D H, YAO C F. Effect of turning and surface polishing treatments on surface integrity and fatigue performance of nickel-based alloy GH4169[J]. Metals, 2018, 8(7):549.
[6] LIU G L, HUANG C Z, ZOU B, et al. Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations[J]. Surface and Coatings Technology, 2016, 307:182-189.
[7] SUÁREZ A, VEIGA F, DE LACALLE L N L, et al. Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718[J]. Journal of Materials Engineering and Performance, 2016, 25(11):5076-5086.
[8] 罗学昆, 吴小燕, 王科昌, 等. 表面完整性对FGH95合金高温疲劳性能的影响[J]. 航空材料学报, 2020, 40(2):53-60. LUO X K, WU X Y, WANG K C, et al. Effect of surface integrity evolution on high-temperature fatigue property of FGH95 alloy[J]. Journal of Aeronautical Materials, 2020, 40(2):53-60(in Chinese).
[9] 杨慎亮, 李勋, 王子铭, 等. TC4侧铣表面完整性对试件疲劳性能的影响[J]. 表面技术, 2019, 48(11):372-380. YANG S L, LI X, WANG Z M, et al. Influence of side milling on surface integrity and fatigue behavior of TC4 specimens[J]. Surface Technology, 2019, 48(11):372-380(in Chinese).
[10] TRAVIESO-RODRÍGUEZ J A, JEREZ-MESA R, GÓMEZ-GRAS G, et al. Hardening effect and fatigue behavior enhancement through ball burnishing on AISI 1038[J]. Journal of Materials Research and Technology, 2019, 8(6):5639-5646.
[11] RODRÍGUEZ A, CALLEJA A, LÓPEZ DE LACALLE L N, et al. Burnishing of FSW aluminum Al-Cu-Li components[J]. Metals, 2019, 9(2):260.
[12] ZHUANG W, WICKS B. Mechanical surface treatment technologies for gas turbine engine components[J]. Journal of Engineering for Gas Turbines & Power, 2003, 125(4):1021-1025.
[13] MCCLUNG R C. A literature survey on the stability and significance of residual stresses during fatigue[J]. Fatigue & Fracture of Engineering Material & Structures, 2007, 30(3):173-205.
[14] 高玉魁. 残余应力基础理论及应用[M]. 上海:上海科学技术出版社, 2019:1-14. GAO Y K. Basic theory and application of residual stress[M]. Shanghai:Shanghai Scientific & Technical Publishers, 2019:1-14(in Chinese).
[15] GILL C M, FOX N, WITHERS P J. Shakedown of deep cold rolling residual stresses in titanium alloys[J]. Journal of Physics D:Applied Physics, 2008, 41(17):174005.
[16] NIKITIN I, BESEL M. Residual stress relaxation of deep-rolled austenitic steel[J]. Scripta Materialia, 2008, 58(3):239-242.
[17] SAALFELD S, OEVERMANN T, NIENDORF T, et al. Consequences of deep rolling on the fatigue behavior of steel SAE 1045 at high loading amplitudes[J]. International Journal of Fatigue, 2019, 118:192-201.
[18] BENEDETTI M, FONTANARI V, MONELLI B D. Numerical simulation of residual stress relaxation in shot peened high-strength aluminum alloys under reverse bending fatigue[J]. Journal of Engineering Materials and Technology, 2010, 132(1):011012
[19] JAMES M R. The relaxation of residual stresses during fatigue[M]. Boston:Springer, 1982:297-314.
[20] CHIN K S, IDAPALAPATI S, PARADOWSKA A, et al. Mechanical stress relaxation of a laser peened and shot peened Ni-based superalloy[C]//International Conference on Advanced Surface Enhancement. Singapore, Springer, 2019:182-189.
[21] SANO Y, AKITA K, TAKEDA K, et al. Stability of residual stress induced by laser peening under cyclic mechanical loading[J]. International Journal of Structural Integrity, 2011, 2(1):42-50.
[22] YOU C, ACHINTHA M, SOADY K A, et al. Low cycle fatigue life prediction in shot-peened components of different geometries-part I:residual stress relaxation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(5):761-775.
[23] WANG Z, CHEN Y, JIANG C. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment[J]. Applied Surface Science, 2011, 257(23):9830-9835.
[24] JUIJERM P, ALTENBERGER I. Residual stress relaxation of deep-rolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures[J]. Scripta Materialia, 2006, 55(12):1111-1114.
[25] KODAMA S. The behavior of residual stress during fatigue stress cycles[C]//Proceedings of the International Conference on Mechanical Behavior of Metals II. Kyoto:Society of Material Science, 1972:111-118.
[26] HAN S, LEE T, SHIN B. Residual stress relaxation of welded steel components under cyclic load[J]. Steel Research, 2002, 73(9):414-420.
[27] ZHUANG W Z, HALFORD G R. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23:31-37.
[28] HOLZAPFEL H, SCHULZE V, VÖHRINGER O, et al. Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures[J]. Materials Science and Engineering:A, 1998, 248(1-2):9-18.
[29] DALAEI K, KARLSSON B, SVENSSON L E. Stability of shot peening induced residual stresses and their influence on fatigue lifetime[J]. Materials Science and Engineering:A, 2011, 528(3):1008-1015.
[30] MAUDUIT C, KUBLER R, BARRALLIER L, et al. Analysis of residual stress relaxation under mechanical cyclic loading of shot-peened TRIP780 steel[C]//Materials Research Proceedings. Millersville, PA:Springer, 2017:85-90.
[31] BROITMAN E. Indentation hardness measurements at macro-, micro-, and nanoscale:a critical overview[J]. Tribology Letters, 2017, 65(1):23.
[32] ZAROOG O S, ALI A, SAHARI B B, et al. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy[J]. International Journal of Fatigue, 2011, 33(2):279-285.
[33] ISA M R, ZAROOG O S, ALI F S. Relationship between compressive residual stress relaxation and microhardness reduction after cyclic loads on shot peened ASTM A516 Grade 70 steel[C]//Key Engineering Materials. Switzerland:Trans Tech Publications, 2018:232-236.
[34] 钟丽琼, 严振, 梁益龙, 等. 残余应力场和不同应力比下TC11钛合金的高周疲劳性能[J]. 稀有金属材料与工程, 2015, 44(5):1224-1228. ZHONG L Q, YAN Z, LIANG Y L, et al. Property of high cycle fatigue of TC11 under residual stress and different stress ratios[J]. Rare Metal Materials and Engineering, 2015, 44(5):1224-1228(in Chinese).
[35] LI D, CHEN H N, XU H. The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel[J]. Applied Surface Science, 2009, 255(6):3811-3816.
[36] ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia, 2003, 48(12):1593-1598.
[37] 毛淼东. 超声滚压对TI-6Al-4V合金高低周疲劳性能影响研究[D]. 上海:华东理工大学, 2018:66-70. MAO M D. Study on the effect of ultrasonic deep rolling on the low-and high-cycle fatigue behavior of Ti-6Al-4V alloy[D]. Shanghai:East China University of Science and Technology, 2018:66-70(in Chinese).
[38] YAN Z, WANG D, WANG W, et al. Ratcheting strain and microstructure evolution of AZ31B magnesium alloy under a tensile-tensile cyclic loading[J]. Materials, 2018, 11(4):513.
[39] MARTIN U, ALTENBERGER I, SCHOLTES B, et al. Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045[J]. Materials Science and Engineering:A, 1998, 246(1-2):69-80.
[40] ALTENBERGER I, SCHOLTES B, MARTIN U, et al. Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304[J]. Materials Science and Engineering:A, 1999, 264(1-2):1-16.
[41] YAO C F, WU D X, MA L F, et al. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy[J]. Applied Surface Science, 2016, 387:1257-1264.
[42] WU D X, YAO C F, ZHANG D H. Surface characterization and fatigue evaluation in GH4169 superalloy:Comparing results after finish turning; shot peening and surface polishing treatments[J]. International Journal of Fatigue, 2018, 113:222-235.
[43] SUN J, WANG T, SU A, et al. Surface integrity and its influence on fatigue life when turning nickel alloy GH4169[J]. Procedia CIRP, 2018, 71:478-483.
[44] DE LOS RIOS E R, TRULL M, LEVERS A. Modelling fatigue crack growth in shot-peened components of Al 2024-T351[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(8):709-716.
[45] GALZY F, MICHAUD H, SPRAUEL J M. Approach of residual stress generated by deep rolling application to the reinforcement of the fatigue resistance of crankshafts[C]//Materials Science Forum. Switzerland:Trans Tech Publications, 2005:384-389.
[46] NIE X F, HE W F, ZANG S L, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253:68-75.
[47] DENG G J, TU S T, ZHANG X C, et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 C in air[J]. Engineering Fracture Mechanics, 2016, 153:35-49.
[48] WANG J, ZHAO F T, SHA Y D, et al. Fatigue life research and experimental verification of superalloy thin-walled structures subjected to thermal-acoustic loads[J]. Chinese Journal of Aeronautics, 2020, 33(2):598-608.
[49] 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40(4):222465. CHEN Y J, LIU C C, WANG F S. Multiaxial fatigue behavior and life prediction of aerospace aluminum alloy under pre-corrosion and alternate corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):222465(in Chinese).
[50] 王旭亮, 聂宏. 考虑载荷加载顺序的模糊Miner理论研究[J]. 中国机械工程, 2008, 19(22):2725-2728. WANG X L, NIE H. Study on fuzzy miner's rule considering load sequence[J]. China Mechanical Engineering, 2008, 19(22):2725-2728(in Chinese).
[51] MESMACQUE G, GARCIA S, AMROUCHE A, et al. Sequential law in multiaxial fatigue, a new damage indicator[J]. International Journal of Fatigue, 2005, 27(4):461-467.
[52] SASEK S, OLSSON M. The probability of HCF-Surface and sub-surface models[J]. International Journal of Fatigue, 2016, 92:147-158.
[53] COLIN J, FATEMI A, TAHERI S. Cyclic hardening and fatigue behavior of stainless steel 304L[J]. Journal of Materials Science, 2011, 46(1):145-154.
[54] KLUGER K. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress[J]. International Journal of Fatigue, 2015, 80:22-29.
[55] CARPINTERI A, KUREK M, ŁAGODA T, et al. Estimation of fatigue life under multiaxial loading by varying the critical plane orientation[J]. International Journal of Fatigue, 2017, 100:512-520.
[56] KAROLCZUK A, MACHA E. Selection of the critical plane orientation in two-parameter multiaxial fatigue failure criterion under combined bending and torsion[J]. Engineering Fracture Mechanics, 2008, 75(3-4):389-403.
[57] PAPADOPOULOS I V. Long life fatigue under multiaxial loading[J]. International Journal of Fatigue, 2001, 23(10):839-849.
[58] 吴志荣, 胡绪腾, 宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报, 2013, 49(2):59-66. WU Z R, HU X T, SONG Y D. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering, 2013, 49(2):59-66(in Chinese).
[59] AHMADZADEH G R, VARVANI-FARAHANI A. Fatigue damage and life evaluation of SS304 and Al 7050-T7541 alloys under various multiaxial strain paths by means of energy-based Fatigue damage models[J]. Mechanics of Materials, 2016, 98:59-70.
[60] WU Z R, HU X T, LL Z X, et al. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4[J]. Journal of Mechanical Science and Technology, 2016, 30(5):1997-2004.
[61] BERTO F, CAMPAGNOLO A, WELO T. Local strain energy density to assess the multiaxial fatigue strength of titanium alloys[J]. Frattura ed Integrità Strutturale, 2016, 10(37):69-79.
[62] 金丹, 王巍, 田大将, 等. 非比例载荷下缺口件疲劳寿命有限元分析[J]. 机械工程学报, 2014, 50(12):25-29. JIN D, WANG W, TIAN D J, et al. Finite element analysis of fatigue life for notched specimen under nonproportional loading[J]. Journal of Mechanical Engineering, 2014, 50(12):25-29(in Chinese).
[63] SHAMSAEI N, MCKELVEY S A. Multiaxial life predictions in absence of any fatigue properties[J]. International Journal of Fatigue, 2014, 67:62-72.
Outlines

/