Fluid Mechanics and Flight Mechanics

Experiment on operation stability of valveless pulse detonation rocket engine

  • TAN Fengguang ,
  • WANG Ke ,
  • YU Xiaodong ,
  • WANG Yun ,
  • LI Qing'an ,
  • FAN Wei
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shaanxi Key Laboratory of Thermal Sciences in Aeroengine System, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2020-05-07

  Revised date: 2020-07-11

  Online published: 2020-08-07

Supported by

National Natural Science Foundation of China (91641101, 91441201); Natural Science Basic Research Program of Shaanxi Province(2020 JQ-185); the Fundamental Research Funds for the Central Universities (3102018AX006, 3102019ZX024)

Abstract

Despite the ability of the valveless scheme to produce high frequency detonations, the problems leading to unsteady operations such as deflagration, ignition failure, and discrepancy in frequencies of operation and ignition are not clear. To study the influence of supply conditions on steady operations of the pulse detonation rocket engine, experiments have been conducted based on the valveless mode. Ethylene and oxygen-enriched air have been utilized as fuel and oxidizer, respectively. Influence of the oxygen volume fraction on the operation stability has also been analyzed. The results indicate that steady detonations are available only when the equivalence ratio is within a proper range, i.e., 1.2-1.7 and 0.8-2.3, when the oxygen volume fractions of 40% and 66% are used, respectively. The range of the equivalence ratio increases for producing detonation when the oxidizer with the volume fraction of 66% is used. In addition, pressure oscillations near the closed end of the detonation tube will propagate upwards to the supply passages when fully-developed detonations are produced, and thus flow oscillations, with a frequency times of the detonation frequency, will be induced inside the supply passages. However, the flow oscillations appear disorderly if steady detonations are not obtained in the detonation tube. Since the disorderly flow oscillations inside the supply passages will further influence the operation stability, measures to control them should be considered.

Cite this article

TAN Fengguang , WANG Ke , YU Xiaodong , WANG Yun , LI Qing'an , FAN Wei . Experiment on operation stability of valveless pulse detonation rocket engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 124189 -124189 . DOI: 10.7527/S1000-6893.2020.24189

References

[1] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005. YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese).
[2] PEACE J T, LU F K. Performance modeling of pulse detonation engines using the method of characteristics[J]. Aerospace Science and Technology, 2019, 88:51-64.
[3] ALAM N, SHARMA K K, PANDEY K M. Combustion characteristics of hydrogen-air mixture in pulse detonation engines[J]. Journal of Mechanical Science and Technology, 2019, 33(5):2451-2457.
[4] ZHENG D, WANG B. Acceleration of DDT by non-thermal plasma in a single-trial detonation tube[J]. Chinese Journal of Aeronautics, 2018, 31(5):1012-1019.
[5] 夏镇娟, 马虎, 卓长飞, 等. 圆盘结构下旋转爆震波的不稳定传播特性[J]. 航空学报, 2018, 39(2):44-55. XIA Z J, MA H, ZHUO C F, et al. Characteristics of unstable propagation of rotating detonation wave in plane-radial structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):44-55(in Chinese).
[6] XUE S, LIU H, ZHOU L, et al. Experimental research on rotating detonation with liquid hypergolic propellants[J]. Chinese Journal of Aeronautics, 2018, 31(12):2199-2205.
[7] WANG K, FAN W. Efforts on high-frequency pulse detonation engines[J]. Journal of Propulsion and Power, 2017, 33(1):17-28.
[8] WOLANSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
[9] KAILASANATH K. Recent developments in the research on pulse detonation engines[J]. AIAA Journal, 2003, 41(2):145-159.
[10] 谢峤峰, 王兵, 董琨. 基于连续旋转爆震的推进技术研究进展[J]. 气体物理, 2020, 5(1):1-23. XIE Q F, WANG B, DONG K. Progress in research of rotating detonation propulsion[J]. Physics of Gases, 2020, 5(1):1-23(in Chinese).
[11] WANG K, FAN W, YAN Y, et al. Operation of a rotary-valved pulse detonation rocket engine utilizing liquid kerosene and oxygen[J]. Chinese Journal of Aeronautics, 2011, 24(6):726-733.
[12] KASAHARA J, HIRANO M, MATSUO A, et al. Thrust measurement of a multicycle partially filled pulse detonation rocket engine[J]. Journal of Propulsion and Power, 2009, 25(6):1281-1290.
[13] PANICKER P K, LI J, LU F K, et al. Development of a compact liquid fueled pulsed detonation engine with pre-detonator:AIAA-2007-0237[R]. Reston:AIAA, 2007.
[14] MATSUOKA K, TAKI H, KAWASAKI A, et al. Semi-valveless pulse detonation cycle at a kilohertz-scale operating frequency[J]. Combustion and Flame, 2019, 205:434-440.
[15] MATSUOKA K, MUTO K, KASAHARA J, et al. Investigation of fluid motion in valveless pulse detonation combustor with high-frequency operation[J]. Proceedings of the Combustion Institute, 2017, 36(2):2641-2647.
[16] KASAHARA J, HASEGAWA A, NEMOTO T, et al. Performance validation of a single-tube pulse detonation rocket system[J]. Journal of Propulsion and Power, 2009, 25(1):173-180.
[17] 孙亮, 白少卿, 罗大亮. 脉冲爆震发动机旋转阀技术研究[J]. 火箭推进, 2016, 42(4):41-46. SUN L, BAI S Q, LUO D L. Technology research of rotary valve for pulse detonation engine[J]. Journal of Rocket Propulsion, 2016, 42(4):41-46(in Chinese).
[18] LI J, FAN W, CHEN W, et al. Propulsive performance of a liquid kerosene/oxygen pulse detonation rocket engine[J]. Experimental Thermal and Fluid Science, 2011, 35(1):265-271.
[19] MATSUOKA K, ESUMI M, IKEGUCHI K B, et al. Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve[J]. Combustion and Flame, 2012, 159(3):1321-1338.
[20] WANG K, FAN W, LU W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71:605-614.
[21] ENDO T, MASUDA K, WATANABE W, et al. Reduction of air flow rate for pulse-detonation-turbine-engine operation by water-droplet injection[J]. Journal of Thermal Science and Technology, 2016, 11(2):1-11.
[22] VALAEV A A, ZHIMERIN D G, MIRONOV E A, et al. Method and apparatus for intermittent combustion:US 3954380[P]. 1976-05-04.
[23] LU F K, MEYERS J M, WILSON D R. Experimental study of propane-fueled pulsed detonation rocket:AIAA-2003-6974[R]. Reston:AIAA, 2003.
[24] LU W, FAN W, WANG K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2017, 36(2):2657-2664.
[25] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析[J]. 物理学报, 2012, 61(12):379-386. SUN J, LIU W Q. Research on convective cooling effect of leading edge platelet of airfoil[J]. Acta Physica Sinica, 2012, 61(12):379-386(in Chinese).
[26] WANG K, WANG Z, ZHAO M, et al. Study on the valveless and purgeless scheme to produce high frequency detonations in a long duration[J]. Energy, 2019, 189:1-11.
[27] 范育新, 王家骅, 宫继双, 等. 壁温蒸发器对脉冲爆震发动机工作性能的影响[J]. 航空学报, 2010, 31(1):82-87. FAN Y X, WANG J H, GONG J S, et al. Effect of wall-evaporator on performance of a pulse detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):82-87(in Chinese).
[28] LU F K, CARTER J D, WILSON D R. Development of a large pulse detonation engine demonstrator:AIAA-2011-5544[R]. Reston:AIAA, 2011.
[29] TAN F G, WANG K, WANG Z C, et al. Experimental investigations on the temperature equilibrium process inside a detonation tube operating in a valveless scheme[J]. Acta Astronautica, 2020, 174:359-366.
[30] WANG Y J, WANG K, FAN W, et al. Experimental study on the wall temperature and heat transfer of a two-phase pulse detonation rocket engine[J]. Applied Thermal Engineering, 2017, 114:387-393.
[31] WANG K, WANG Z C, ZHANG Q B, et al. Study on a simplified double-frequency scheme for pulse detonation rocket engines[J]. Acta Astronautica, 2018, 148:337-344.
[32] 鲁唯,范玮,王可,等. 无阀式煤油脉冲爆震火箭发动机工作循环特性研究[J]. 推进技术, 2018, 39(5):971-978. LU W, FAN W, WANG K, et al. Study on cycle processes of a valveless kerosene-fueled pulse detonation rocket engine[J]. Journal of Propulsion Technology, 2018, 39(5):971-978(in Chinese).
[33] 何海平, 唐科范. 圆截面闭端型旁支管流致声共振数值模拟研究[J]. 水动力学研究与进展, 2018, 33(6):749-758. HE H P, TANG K F. Numerical simulation of aero-acoustical resonances in side-branch ducts with circular cross-section and closed ends[J]. Chinese Journal of Hydrodynamics, 2018, 33(6):749-758(in Chinese).
[34] 黄超, 张锴, 肖瑶, 等. 大管径主管上旁支管流致声共振实验研究[J]. 核动力工程, 2020, 41(4):79-84. HUANG C, ZHANG K, XIAO Y, et al. Experimental study of flow-induced acoustic resonance in side branch on large diameter pipeline[J]. Nuclear Power Engineering, 2020, 41(4):79-84(in Chinese).
Outlines

/