This paper focuses on multiple Line-of-Sight (LOS) angles-only relative navigation of multiple collaborative space robots for non-cooperative targets. To improve the relative navigation performance by fusing multi-LOS information, we propose a multi-LOS relative navigation method based on observability optimization. A relative dynamic model and a state equation between the center robot and the non-cooperative target as well as the observation equation of the multi-robot LOS are firstly developed, and the multi-LOS angles-only relative navigation system is then studied. After that, the angle condition of the multi-LOS with optimal observability is obtained, and a method for the observation configuration optimization of multiple space robots is proposed, considering the observability and long-term natural maintenance. Finally, the simulation results show that the method can significantly improve the range state observability and estimation performance, therefore having good application prospect in space missions.
HAN Fei
,
LIU Fucheng
,
WANG Zhaolong
,
DU Xuan
,
LIU Shanshan
,
LIU Chaozhen
. Multiple line-of-sight angles-only relative navigation by multiple collaborative space robots[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(1)
: 524174
-524174
.
DOI: 10.7527/S1000-6893.2020.24174
[1] LORENZO O, ALESSANDRO F. Large constellations assessment and optimization in LEO space debris environment[J]. Advances in Space Research, 2020, 65:351-363.
[2] PARDINI C, ANSELMO L. Environmental sustainability of large satellite constellations in low earth orbit[J]. Acta Astronautica, 2020,170:27-36.
[3] MORIN J. Four steps to global management of space traffic[J]. Nature, 2019, 567:25-27.
[4] WOFFINDEN D C, GELLER D K. Observability criteria for angles-only navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3):1194-1208.
[5] GELLER D K, KLEIN I. Angles-only navigation state observability during orbital proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1976-1983.
[6] BODIN P, NOTEBORN R, LARSSON R, et al. The Prisma formation flying demonstrator:Overview and conclusions from the nominal mission[J]. Advances in the Astronautical Sciences, 2012, 144:441-460.
[7] ARDAENS J S, GAIAS G, Angles-only relative orbit determination in low earth orbit[J/OL]. Advances in Space Research, (2017-10-08)[2018-03-10]. http://doi.org/10.1016/j.asr.2018.03.016.
[8] 尤岳. 空间碎片清除仅测角相对导航与机动规划[D]. 长沙:国防科技大学, 2017:127-131. YOU Y. Study on angles-only relative navigation and maneuver planning in space debris removal[D]. Changsha:National University of Defense Technology, 2017:127-131(in Chinese).
[9] FRANQUIZ F J, MUNOZ J D,UDRE B, et al. Optimal range observability maneuvers of a spacecraft formation using angles-only navigation[J]. Acta Astronautica,2018,153:337-348.
[10] LUO J J, GONG B C, YUAN J P, et al. Angles-only relative navigation and closed-loop guidance for spacecraft proximity operations[J]. Acta Astronautica, 2016, 128:91-106.
[11] GELLER D K, PEREZ A. Initial relative orbit determination for close-in proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(9):1833-1842.
[12] GONG B C, LI W D, LI S, et al. Angles-only initial relative orbit determination algorithm for noncooperative spacecraft proximity operations[J]. Astrodynamics, 2018, 2(3):217-231.
[13] GONG B C, GELLER D K, LUO J J. Initial relative orbit determination analytical covariance and performance analysis for proximity operations[J]. Journal of Spacecraft and Rockets, 2016, 53(5):822-835.
[14] GAIAS G, D'AMICO S, ARDAENS J S. Angles-only navigation to a noncooperative satellite using relative orbital elements[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2):439-451.
[15] 韩飞, 梁彦, 郭雯婷, 等. 一种用星上视线角度信息的相对导航方法:ZL 201110011003.1[P].2015-7-15. HAN F, LIANG Y, GUO W T, et al. A method of relative navigation using line-of-sight angles on satellite:ZL 201110011003.1[P].2015-7-15(in Chinese).
[16] GARG S K. Initial relative-orbit determination using second-order dynamics and line-of-sight measurements[D]. Alabam:Auburn University, 2015:152-183.
[17] PEREZ A C, GELLER D K, LOVELL T A. Non-iterative angles-only initial relative orbit determination with J2 perturbations[J]. Acta Astronautica, 2018, 151:146-159.
[18] LI F, CAO X B, YOU Y, et al. Case study:Feasibility analysis of close-in proximity operations using angles-only navigation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63(2):31-41.
[19] 李松,陈琪锋,钟日进. 不完整测量下集群飞行器协同相对定位方法[J].飞控与探测, 2019, 2(6):18-25. LI S, CHEN Q F, ZHONG R J. Collaborative relative positioning method for cluster aircraft under incomplete measurement[J]. Flight Control & Detection, 2019, 2(6):18-25(in Chinese).
[20] 高学海, 梁斌, 潘乐, 等. 高轨非合作目标多视线分布式相对导航方法[J]. 宇航学报, 2015, 36(3):292-299. GAO X H, LIANG B, PAN L, et al. Distributed relative navigation of GEO non-cooperative target based on multiple line-of-sight measurements[J]. Journal of Astronautics, 2015, 36(3):292-299(in Chinese).
[21] 王楷, 陈统, 徐世杰. 基于双视线测量的相对导航方法[J]. 航空学报, 2011, 32(6):1084-1091. WANG K, CHEN T, XU S J. A method of double line-of-sight measurement relative navigation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1084-1091(in Chinese).
[22] 王楷, 徐世杰, 黎康, 等. 双视线测量相对导航方法误差分析与编队设计[J]. 航空学报, 2018, 39(9):322014. WANG K, XU S J, LI K, et al. Error analysis and formation design for double line-of-sight measuring relative navigation method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):322014(in Chinese).
[23] CHEN T, XU S J. Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67:122-134.
[24] MORGAN D,CHUNG S J, BLACKMORE L,et al. Swarm-keeping strategies for spacecraft under J2 and atmospheric drag perturbations[J]. Journal of Guidance Control and Dynamics, 2012, 35(5):1492-1506.
[25] JAEHWAN P I, BANG H. Trajectory design for improving observability of angles-only relative navigation between two Satellites[J]. Journal of Astronautical Science, 2015,61(4):1-22.