Fluid Mechanics and Flight Mechanics

Direct simulation method of transient-state performance of variable cycle engines

  • JIA Linyuan ,
  • CHEN Yuchun ,
  • CHENG Ronghui ,
  • SONG Keran ,
  • TAN Tian
Expand
  • 1. School of power and energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Aero-engine corporation of China, Shenyang Engine Research Institute, Shenyang 110015, China

Received date: 2020-02-26

  Revised date: 2020-06-16

  Online published: 2020-08-07

Supported by

Aviation Power Foundation(6141B09050382)

Abstract

To simulate the transient-state performance and design the control schedule of variable cycle engines (VCEs), we develop the VCE transient-state direct simulation method based on the steady-state reverse method and the transient-state implicit simulation model. Models of the volume effect and the rotor dynamics are added to the steady-state reverse method, making it possible to directly calculate the control schedule of the variable geometry parameters and the fuel mass flow with the given accelerating rate, turbine inlet total temperature and the operating points of compressors. The method is validated in terms of feasibility and accuracy and is then used to design the control schedule and simulate the performance of a VCE mode-transition process. Results show that the deviations of the transition-state direct simulation method are within 0.58%. The mode-transition time from the single-bypass mode to the double-bypass mode under the supersonic cruise condition is around 1 s, while that from double-bypass to single-bypass in the sea level steady state is 3 s. During the mode-transition, the parameters such as thrust, rotational speeds, turbine inlet total temperature and surge margins vary smoothly. The direct simulation method can simplify the design process and improve the design accuracy of the VCE mode-transition control schedule.

Cite this article

JIA Linyuan , CHEN Yuchun , CHENG Ronghui , SONG Keran , TAN Tian . Direct simulation method of transient-state performance of variable cycle engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 123901 -123901 . DOI: 10.7527/S1000-6893.2020.23901

References

[1] PRZYBYLKO S, ROCK S. Evaluation of a multivariable control design on a variable cycle engine simulation:AIAA-82-1077[R]. Reston:AIAA, 1982.
[2] 唐海龙. 面向对象的航空发动机性能模拟系统及其应用[D]. 北京:北京航空航天大学, 2000. TANG H L. Object-Oriented aeroengine performance simulation system and its application[D]. Beijing:Beihang University, 2000(in Chinese).
[3] 刘增文,王占学,蔡元虎. 变循环发动机模态转换数值模拟[J]. 航空动力学报, 2011, 26(9):2128-2132. LIU Z W, WANG Z X, CAI Y H. Numerical simulation on bypass transition of variable cycle engine[J]. Journal of Aerospace Power, 2011, 26(9):2128-2132(in Chinese).
[4] 苟学中. 变循环发动机建模及控制规律研究[D]. 南京:南京航空航天大学,2011. GOU X Z. Research on modeling and control laws for variable cycle engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
[5] 周红,王占学,张晓博,等. 变循环发动机模态转换的几何调节规律[J]. 航空动力学报, 2015, 30(9):2160-2166. ZHOU H, WANG Z X, ZHANG X B, et al. Geometry regulating law of variable cycle engine during mode transition[J]. Journal of Aerospace Power, 2015, 30(9):2160-2166(in Chinese).
[6] 周红. 变循环发动机及其与飞机一体化设计研究[D]. 西安:西北工业大学, 2016. ZHOU H. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi'an:Northwestern Polytechnical University, 2016(in Chinese).
[7] 周红,王占学,刘增文,等. 双外涵变循环发动机可变几何特性研究[J]. 航空学报, 2014, 35(8):2126-2135. ZHOU H, WANG Z X, LIU Z W, et al. Variable geometry characteristics research of double bypass variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2126-2135(in Chinese).
[8] ZHENG J, CHEN M, TANG H. Matching mechanism analysis on an adaptive cycle engine[J]. Chinese Journal of Aeronautics, 2017, 30(2):706-718.
[9] 刘佳鑫,王志强,严伟,等. 单/双涵道模式转换动态过程的数值研究[J]. 推进技术, 2017, 38(8):1699-1708. LIU J X, WANG Z Q, YAN W, et al. Numerical simulation of transition between single and double bypass mode[J]. Journal of Propulsion Technology, 2017, 38(8):1699-1708(in Chinese).
[10] 张晓博,王占学,周红. FLADE变循环发动机模态转换过程特性分析[J]. 推进技术, 2018, 39(1):14-22. ZHANG X B, WANG Z X, ZHOU H. Analysis on characteristics of mode transition performance of variable cycle engine with FLADE[J]. Journal of Propulsion Technology, 2018, 39(1):14-22(in Chinese).
[11] 薛益春. 变循环发动机多变量控制及性能寻优[D]. 南京:南京航空航天大学, 2012. XUE Y C. Multivariable control and performance optimization of variable cycle engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[12] 徐佩佩. 变循环发动机多变量控制及性能寻优[D]. 南京:南京航空航天大学, 2016. XU P P. Multivariable control and performance optimization of variable cycle engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[13] ULIZAR I, PILIDIS P. Transition control and performance of the selective bleed variable cycle turbofan:95-GT-286[R]. New York:ASME, 1995.
[14] 谢振伟, 郭迎清, 姜彩虹, 等.变循环发动机完全分布式控制[J].航空学报,2016,37(6):1809-1818. XIE Z W, GUO Y Q, JIANG C H, et al. Fully distributed control of variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1809-1818. (in Chinese).
[15] CORBETT M, WOLFF M. Modeling transient effects of a double bypass engine:AIAA-2010-7090[R]. Reston:AIAA, 2010.
[16] CONNOLLY J W, KOPASAKIS G, CARLSON J, et al. Nonlinear dynamic modeling of a supersonic commercial transport turbo-machinery propulsion system for aero-propulso-servo-elasticity research:AIAA-2015-4031[R]. Reston:AIAA, 2015.
[17] 贾琳渊,陈玉春,谭甜,等. 变几何参数对变循环发动机过渡态性能的影响分析[J]. 推进技术, 2020, 41(8):1681-1691. JIA L Y, CHEN Y C, TAN T, et al. Analysis for influence of variable geometry parameters on transition state performance of variable cycle engine[J]. Journal of Propulsion Technology, 2020, 41(8):1681-1691(in Chinese).
[18] 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安:西北工业大学, 2017. JIA L Y. Variable cycle engine control law design[D]. Xi'an:Northwestern Polytechnical University, 2017(in Chinese).
[19] 宋可染,陈玉春,贾琳渊,等. 涡扇发动机加减速特性显式与隐式计算方法[J]. 推进技术, 2021, 42(1).(待发表) SONG K R, CHEN Y C, JIA L Y, et al. Explicit and implicit method to calculate acceleration and deceleration performance of turbofan engines[J]. Journal of Propulsion Technology, 2021, 42(1) (to be published) (in Chinese).
[20] JIA L, CHEN Y, REN C, et al. Steady state control schedule optimization for a variable cycle engine:ICMAE-2018-C129[R]. Budapest:ICMAE, 2018.
[21] 陈玉春,贾琳渊,任成,等. 变循环发动机稳态控制规律设计的新方法[J]. 推进技术, 2017, 38(10):2262-2270. CHEN Y C, JIA L Y, REN C, et al. An innovative method for design of steady state control law for variable cycle engines[J]. Journal of Propulsion Technology, 2017, 38(10):2262-2270(in Chinese).
[22] SULLIVAN T, PARKER D E. Design study and performance analysis of a high speed multistage variable geometry fan for a variable cycle engine:NASA CR-159545[R].Washington,D.C.:NASA Lewis Research Center, 1979.
Outlines

/