Article

Initial fatigue quality comparison of aluminum alloy materials for aircraft wings

  • GAO Zhigang ,
  • HE Yuting ,
  • MA Binlin ,
  • ZHANG Tianyu
Expand
  • Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2020-06-08

  Revised date: 2020-07-02

  Online published: 2020-08-03

Supported by

National Natural Science Foundation of China (51805538); National Defence Pre-research Foundation (61409220202); Basic Research Plan of Natural Science in Shaanxi Province(2020 JQ-476); The Youth Talent Lift Program of Shaanxi University Association for Science and Technology(20190410)

Abstract

The urgent demand for ultra-high strength aluminum alloy materials in the current aviation industry makes it extremely important to realize the localization of this material with desirable application effect. To evaluate the Initial Fatigue Quality (IFQ) of the new aluminum alloy material 7XXX commonly used in China's aviation industry, we select the Time To Crack Initiation (TTCI) and Equivalent Initial Flaw Size (EIFS) as the comparison parameters. Firstly, the fatigue tests of 7XXX fastening hole specimens for China's aircraft wings and BXXX fastening hole specimens of Russian series are conducted at three stress levels, i.e. low, medium and high, and the results show that the TTCI of the two specimens at different stress levels tend to be the same with the maximum difference being only 3.71%; the EIFS of each specimen is obtained, and the fatigue statistical method verifies no significant difference between these two values. A structural detail equivalent initial flaw model with different exceedance probabilities P is proposed to effectively evaluate the quality risk of the structural details of the aircraft. The general EIFS distribution of the structural details of the two specimens is established and compared. Both are smaller than 0.125 mm specified in China's military manual. In addition, when the exceedance probability is 5%, the general EIFS value of the 7XXX material is smaller than that of the BXXX material.

Cite this article

GAO Zhigang , HE Yuting , MA Binlin , ZHANG Tianyu . Initial fatigue quality comparison of aluminum alloy materials for aircraft wings[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(5) : 524375 -524375 . DOI: 10.7527/S1000-6893.2020.24375

References

[1] 颜光耀,刘治国,穆志韬,等. 多种服役环境下航空铝合金疲劳裂纹扩展行为[J]. 国防科技大学学报,2019,41(3):112-118. YAN G Y,LIU Z G,MU Z T,et al.Aviation aluminum crack propagation behavior in multiple service environment[J]. Journal of National University of Defense Technology 2019,41(3):112-118(in Chinese).
[2] 张泰峰,王德,李旭东,等. 不同海域下7B04铝合金铆接结构的腐蚀行为对比研究[J]. 机械科学与技术,2020,39(8):1283-1287. ZHANG T F, WANG D, LI X D,et al.Comparative study on corrosion behavior of 7b04 aluminum alloy riveted structure in different sea areas[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(8):1283-1287(in Chinese).
[3] 刘显东,张永安,李锡武,等. B95оч铝合金的热变形行为研究[J]. 稀有金属,2012,36(5):687-693. LIU X D,ZHANG Y A,LI X W,et al.Hot deformation behavior of B95оч aluminum alloy[J]. Chinese Journal of Rare Metals,2012,36(5):687-693(in Chinese).
[4] 骞西昌,杨守杰,张坤,等. 铝合金在运输机上的应用与发展[J]. 轻合金加工技术,2005(10):1-7. QIAN X C,YANG S J,ZHANG K,et al.Development and application of aluminum alloys on the transport planes[J]. Light Alloy Fabrication Technology,2005(10):1-7(in Chinese).
[5] 李欣. 高强铝合金的发展及其材料的制备加工技术[J]. 内燃机与配件,2019(22):89-90. LI X. Development of high strength aluminum alloy and its material preparation and processing technology[J]. Internal Combustion Engine & Parts,2019(22):89-90(in Chinese).
[6] 盛春磊,刘静安,朱英. 铝及铝合金轧制设备国产化现状及发展趋势[J]. 铝加工,2014(5):36-40. SHENG C L,LIU J A,ZHU Y. Current situation and trend of rolling equipment domesticization for aluminum and aluminum alloy[J]. Aluminium Fabrication,2014(5):36-40(in Chinese).
[7] 梁超,贺小帆. 飞-续-飞谱下7B04-T6铝合金裂纹扩展规律试验研究[J]. 航空材料学报,2010,30(3):74-77. LIANG C,HE X F. Test research on fatigue crack propagation law in aluminum alloy 7b04-t6 under flight-by-flight spectrum[J]. Journal of Aeronautical Materials,2010,30(3):74-77(in Chinese).
[8] 李秀华,陈立佳,张凌云. 7B04超硬铝合金板材成形性能的试验研究[J]. 沈阳工业大学学报,2005,27(5):18-20, 45. LI X H,CHEN L J,ZHANG L Y. Experimental investigation on forming properties of 7B04 super-hardness aluminum alloy sheets[J]. Journal of Shenyang University of Technology,2005,27(5):18-20,45(in Chinese).
[9] DONG H G, LI X Q, WANG H B, et al.Influence of thickness and initial groove angle in M-K model on limit strain of 7B04 by considering through-thickness stress[J]. Chinese Journal of Aeronautics,2020,33(3):1074-1084.
[10] 刘治国,颜光耀,吕航. 7B04铝合金服役环境下点蚀表面损伤特征研究[J]. 环境技术,2017,35(5):46-49, 64. LIU Z G,YAN G Y,LV H. Research on pitting corrosion damage characteristics of 7b04 aluminum alloys in service environment[J]. Environmental Technology,2017,35(5):46-49, 64(in Chinese).
[11] 中国航空研究院. 军用飞机疲劳·损伤容限·耐久性设计手册[M]. 北京:中国航空研究院出版社,1994. Chinese Aeronautical Establishment. Military aircraft fatigue, damage tolerance and durability design manual[M]. Beijing:The Press of Chinese Aeronautical Establishment, 1994(in Chinese).
[12] 李念宗. 浅析飞机结构的一些疲劳破坏问题[J]. 中国设备工程,2019,413(2):29-30. LI N Z. Analysis of fatigue failure of aircraft structure[J]. China Plant Engineering,2019,413(2):29-30(in Chinese).
[13] CORREIA J A F O, BLASÖN S, DE JESUS A M P, et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model[J]. Engineering Failure Analysis, 2016, 69(3):15-28.
[14] ZHAO T L, LIU Z Y, DU C W, et al. Modeling for corrosion fatigue crack initiation life based on corrosion kinetics and equivalent initial flaw size theory[J]. Corrosion Science, 2018, 142:277-283.
[15] FAWAZ S A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 26(3):279-290.
[16] MAKEEV A, NIKISHKOV Y, ARMANIOS E. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models[J]. International Journal of Fatigue, 2007, 29(1):141-145.
[17] 王志智, 王普选, 聂学洲. 一种紧固孔细节原始疲劳质量评定方法[J]. 航空学报, 1998,19(4):471-475. WANG Z Z, WANG P X, NIE X Z. Approach to initial fatigue quality of fastener hole[J]. Acta Aeronautica et Astronautica Sinica, 1998(4):471-475(in Chinese).
[18] 王建国,王祝堂. 航空航天变形铝合金的进展(3)[J].轻合金加工技术,2013, 41(10):1-14. WANG J G,WANG Z T. Advancement in aerospace wrought aluminium alloys (3)[J]. Light Alloy Fabrication Technology,2013, 41(10):1-14(in Chinese).
[19] 中国国家标准化管理委员会. 金属材料疲劳试验数据统计方案与分析方法:GB/T 24176-2009[S]. 北京:中国标准出版社, 2009. Standardization Administration.Metallic materials-fatigue testing-Statistical planning and analysis of data:GB/T 24176-2009[S]. Beijing:Standards Press of China, 2009(in Chinese).
[20] 何宇廷,张腾,崔荣洪,等. 飞机结构寿命控制原理与技术[M]. 北京:国防工业出版社,2017:396-397. HE Y T, ZHANG T, CUI R H, et al. Theory and technology of aircraft structural life control[M]. Beijing:National Defense Industry Press, 2017:396-397(in Chinese).
[21] PARIS P C, GOMEZ P M, ANDERSON W E. A rational analytic theory of fatigue[J]. The Trend in Engineering, 1961, 13(1):9-14.
[22] PROVAN J W. Probabilistic fracture mechanics and reliability[M]. Leiden:Martinus Nijhoff Publishers, 1987:70-72.
[23] 高镇同. 疲劳应用统计学[M]. 北京:国防工业出版社, 1986:277-295. GAO Z T. Fatigue application statistics[M]. Beijing:National Defence of Industry Press, 1986:277-295(in Chinese).
[24] 汪荣鑫. 数理统计[M]. 西安:西安交通大学出版社,1986:67-88. WANG R X. Mathematical statistics[D]. Xi'an:Xi'an Jiaotong University Press, 1986:67-88(in Chinese).
Outlines

/