Material Engineering and Mechanical Manufacturing

Stability evaluation method for box-joint reconfigurable jig based on module service state

  • ZHANG Hongbo ,
  • ZHENG Lianyu ,
  • WANG Yiwei
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China

Received date: 2020-05-05

  Revised date: 2020-06-08

  Online published: 2020-08-03

Supported by

National Natural Science Foundation of China(51805262); Defense Industrial Technology Development Program (JCKY2016601C004); Key Laboratory of Smart Manufacturing for High-end Aerospace Products; Beijing Key Laboratory of Digital and Manufacturing

Abstract

The stability of box-joint reconfigurable jigs has an important impact on the assembly quality of aircraft components. To overcome the deficiencies in the implementation cost and effectiveness of the current stability evaluation methods, we propose a method for evaluating the stability of box-joint jigs based on the module service state. Firstly, we analyzed the service process of the box-joint jig, pointing out that the process is alternately composed of an operational period and an idle period. The definitions of service stability and the degree of service stability are provided. Then, a service state evaluation model based on the key measurement characteristics of the jig is constructed, based on which the service state degradation process of the box-joint jig can be described and the service state during the idle period can be evaluated using the measured data. Meanwhile, the problem that the measured data is unable to obtain during the operational period can be solved by analyzing the multi-source stability influencing factors and using the stability entropy to represent the degradation degree of the service state. Furthermore, the evaluation results of both the operational period and the idle period are adopted to construct a comprehensive stability evaluation model, which can be applied to evaluating more simply and effectively the service stability of the box-joint jig within a certain period of time than the traditional methods. Finally, a rear spar locator module of a certain vertical tail box-joint jig is used to demonstrate the validity of the proposed methods.

Cite this article

ZHANG Hongbo , ZHENG Lianyu , WANG Yiwei . Stability evaluation method for box-joint reconfigurable jig based on module service state[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 424180 -424180 . DOI: 10.7527/S1000-6893.2020.24180

References

[1] 杨亚文, 李永策. 温度对飞机装配型架稳定性的影响及消除[J]. 沈阳航空工业学院学报,2000,17(1):4-7. YANG Y W, LI Y C. Effect of temperature on the stability of assembling flames of airplane and its remedy[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2000, 17(1):4-7(in Chinese).
[2] MARTIN O C, MUELANER J E, TOMLINSON D, et al. The metrology enhanced tooling for aerospace (META) framework[M]. Berlin:Springer-Verlag, 2010.
[3] 郑联语, 王建华. 盒式连接可重构柔性工装技术及应用展望[J]. 航空制造技术, 2013,438(18):26-31. ZHENG L Y, WANG J H. Development and application prospect of box-joint based reconfigurable and flexible tooling technology[J]. Aeronautical Manufacturing Technology, 2013, 438(18):26-31(in Chinese).
[4] ZHANG H B, ZHENG L Y, CHEN X W, et al. A novel reconfigurable assembly jig based on stable agile joints and adaptive positioning-clamping bolts[J]. Procedia CIRP, 2016, 44:316-321.
[5] MUELANER J E, MARTIN O C, MAROPOULOS P G. Metrology enhanced tooling for aerospace (META):strategies for improved accuracy of jig built structures:SAE Technical Paper 2011-01-2557[R]. 2011.
[6] 卢成静,黄桂平,李广云. V-STARS工业摄影三坐标测量系统精度测试及应用[J]. 红外与激光工程, 2007, 36(S1):513-517. LU C J, HUANG G P, LI G Y. Accuracy testing and application of V-STARS[J]. Infrared and Laser Engineering, 2007, 36(S1):513-517(in Chinese).
[7] HELGOSSON P H, OSSBAHR G, TOMLINSON D. Modular and configurable steel structure for assembly fixtures:SAE Technical Paper 2010-01-1873[R]. 2010.
[8] 刘忠梁. 满足飞机装配型架骨架刚度要求的正确途径和方法[J]. 航空制造技术,1994,1(6):24-30. LIU Z L. Correct ways to obtain the rigidity of aircraft assembly jig frame[J]. Aeronautical Manufacturing Technology, 19941(6):24-30(in Chinese).
[9] 潘志毅, 黄翔, 李迎光. 飞机制造大型工装布局设计方法研究与实现[J]. 航空学报, 2008, 29(3):757-762. PAN Z Y, HUANG X, LI Y G. Research and implementation of method of layout design for large tooling in aircraft manufacture[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):757-762(in Chinese).
[10] 洪学玲, 郭龙江, 万世明, 等. 基于MSC.PATRAN/-NASTRAN的飞机装配型架刚度分析及优化设计[J]. 机械设计与制造工程, 2010, 39(9):31-32. HONG X L, GUO L J, WAN S M, et al. Stiffness analysis and optimization of assembly fixture for aircraft based on MSC.PATRAN/NASTRAN[J]. Machine Design and Manufacturing Engineering, 2010, 39(9):31-32(in Chinese).
[11] 黄海军. 飞机装配型架框架式骨架刚度分析[D]. 南京:南京航空航天大学, 2008. HUANG H J. Analysis of rigidity for frame-type framework of aircraft assembly fixture[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[12] 刘清军. 基于稳定性的盒式连接装配型架优化设计与测量技术研究[D]. 北京:北京航空航天大学, 2014. LIU Q J. Research on box-joint assembly jig optimization design and measurement technologies for stability[D]. Beijing:Beihang University, 2014(in Chinese).
[13] 刘忠梁. 地坪的热膨胀在飞机制造中对互换协调的影响[J]. 航空学报, 1987, 8(2):77-84. LIU Z L. Influence of shop floor thermal expansion on interchangeability and coordination of aircraft during assembly[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(2):77-84(in Chinese).
[14] PENDES R, THANTHRY N. Aircraft health management network:a user interface[J]. IEEE Aerospace and Electronic System Magazine, 2009, 24(7):4-9.
[15] 邓超, 孙耀宗, 李嵘,等. 基于隐Markov模型的重型数控机床健康状态评估[J]. 计算机集成制造系统, 2013, 19(3):552-558. DENG C, SUN Y Z, LI R, et al. Hidden Markov model based on the heavy-duty CNC health state estimate[J]. Computer Integrated Manufacturing Systems, 2013, 19(3):552-558(in Chinese).
[16] ZHENG L Y, MCMAHON C A, LI L, et al. Key characteristics management in product lifecycle management:a survey of methodologies and practices[J]. Proceedings of the Institution Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2008, 222(8):989-1008.
[17] 陈哲涵, 杜福洲, 唐晓青. 基于关键测量特性的飞机装配检测数据建模研究[J]. 航空学报, 2012, 33(11):2143-2152. CHEN Z H, DU F Z, TANG X Q. Key measurement characteristics based inspection data modeling for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2143-2152(in Chinese).
[18] 王小巧. 复杂机械产品装配过程质量自适应控制方法及支持系统研究[D]. 合肥:合肥工业大学, 2015. WANG X Q. Research on assembly quality adaptive control method and system for complex mechanical products assembly process[D]. Hefei:Hefei University of Technology, 2015(in Chinese).
[19] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27, 379-423, 623-656.
[20] 王波, 唐晓青. 机械产品装配过程质量控制决策研究[J]. 中国机械工程, 2010,21(2):164-168. WANG B,TANG X Q. Decision-making of quality control for mechanical assembly activities[J]. China Mechanical Engineering, 2010, 21(2):164-168(in Chinese).
[21] 罗良清, 王静. 熵权法在企业统计质量控制中的应用[J]. 统计与信息论坛, 2004,19(6):5-7. LUO L Q, WANG J. Application of entropy weight method in statistical quality control of enterprises[J]. Statistics & Information Forum, 2004, 19(6):5-7(in Chinese).
[22] 徐健, 李西宁, 李卫平, 等.飞机数字化柔性装配工装评价模型构建及应用研究[J]. 机械科学与技术, 2013, 32(11):1595-1599. XU J, LI X N, LI W P, et al. The evaluation model construction and application on aircraft digital flexible assembly tooling.[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(11):1595-1599(in Chinese).
[23] 章穗, 张梅, 迟国泰. 基于熵权法的科学技术评价模型及其实证研究[J]. 管理学报, 2010, 7(1):34. ZHANG H, ZHANG M, CHI G T. The science and technology evaluation model based on entropy weight and empirical research during the 10th five-year of China[J]. Chinese Journal of Management, 2010, 7(1):34(in Chinese).
[24] 周开俊, 李东波. 基于熵权与模糊集的产品可装配性综合评价方法[J]. 机械设计, 2006, 23(3):15-18. ZHOU K J,LI D B. Synthetic evaluation method on assembly possibility of products based on entropy weight and fuzzy set[J]. Journal of Machine Design, 2006, 23(3):15-18(in Chinese).
Outlines

/