Fluid Mechanics and Flight Mechanics

Formation mechanism and elimination algorithm of warping in interactive prismatic grid generation

  • SUN Yan ,
  • JIANG Meng ,
  • MENG Dehong ,
  • PANG Yufei
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-06-23

  Revised date: 2020-07-06

  Online published: 2020-07-27

Supported by

FengLei Youth Innovation Fund of CARDC (20190106); National Numerical Wind Tunnel Project (NNW)

Abstract

The prismatic grid warping may appear when the normal vectors of the surface grid element change considerably or fast in the interactive prismatic grid generation based on radial basis function interpolation, consequently reducing the quality of the prismatic grid. To solve this problem, this paper first introduced and analyzed the warping phenomenon through the prismatic grid generation of the DLR-F6 wing configuration. Then the formation mechanism was investigated by adding different wave-length disturbances to advancing displacement to simulate the effect of the normal vector variation in a flat plate prismatic grid generation case. The prismatic grid generation results of the flat plate with different disturbances demonstrate that the roughness of the advancing displacement could be magnified by spatial interpolation, thus causing the prismatic grid warping whose appearance depends on the distribution of the advancing displacement. The results above also show that the prismatic grid warping is induced by the roughness of the advancing displacement caused by the changes of normal vectors. Subsequently, a smoothing technology was developed based on the Laplace method inspired by the formation mechanism of grid warping and verified through the DLR-F6 wing configuration case. The test results show that the smoothing technology can completely eliminate the grid warping and obtain high-quality prismatic grids. Finally, the potentiality of the prismatic grid generation method with the smoothing technology was displayed through the grid generation case of the DLR-F6 wing-body configuration.

Cite this article

SUN Yan , JIANG Meng , MENG Dehong , PANG Yufei . Formation mechanism and elimination algorithm of warping in interactive prismatic grid generation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(6) : 124443 -124443 . DOI: 10.7527/S1000-6893.2020.24443

References

[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary aerosciences:NASA/CR-2014-218178[R]. Washington,D.C.:NASA, 2014.
[2] 张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J]. 空气动力学学报, 2016, 34(4):405-417. ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computation fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4):405-417(in Chinese).
[3] THOMPSON J F, SONI B K, WEATHERILL N P. Handbook of grid generation[M]. Boca Raton:CRC Press, 1998:4-21.
[4] 张来平, 常兴华, 赵钟, 等. 计算流体力学网格生成技术[M]. 北京:科学出版社, 2017:3-6. ZHANG L P, CHANG X H, ZHAO Z, et al. Mesh generation techniques in computational fluid dynamics[M]. Beijing:Science Press, 2017:3-6(in Chinese).
[5] ALLEN C B. Automatic structured multiblock mesh generation using robust transfinite interpolation[J]. International Journal of Numerical Methods in Engineering, 2008, 74(5):697-733.
[6] CHEN J, XIAO Z, ZHENG Y, et al. Scalable generation of large-scale unstructured meshes by a novel domain decompose[J]. Advances in Engineering Software, 2018, 121:131-146.
[7] BAKER T J. Mesh generation:art or science?[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[8] DYEDOV V, EINSTEIN DR, JIAO X, et al. Variational generation of prismatic boundary-layer meshes for biomedical computing[J]. International Journal of Numerical Methods in Engineering, 2009, 79(8):907-945.
[9] ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and a multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1):47-62.
[10] 赵钟, 张来平, 赫新. 基于"各向异性"四面体网格聚合的复杂外形混合网格生成方法[J]. 空气动力学学报, 2013, 31(1):34-39. ZHAO Z, ZHANG L, HE X. Hybrid grid generation technique for complex geometries based on agglomeration of anisotropic tetrahedrons[J]. Acta Aerodynamica Sinice, 2013, 31(1):34-39(in Chinese).
[11] NAKAHASHI K. Marching grid generation for external viscous flow problems[J]. Transactions of the Japan Society for Aeronautical and Space Science, 1992, 35(108):88-102.
[12] SHAROV D, NAKAHASHI K. Hybrid prismatic/tetrahedral grid generation for viscous flow applications[J]. AIAA Journal, 1998, 36(2):157-162.
[13] GARIMELLA R V, SHEPHARD M S. Boundary layer mesh generation for viscous flow simulations[J]. International Journal of Numerical Methods in Engineering, 2000, 49(1/2):193-218.
[14] AUBRY R, LÖHNER R. On the ‘most normal’ normal[J]. Communications in Numerical Methods in Engineering, 2008, 24(12):1641-1652.
[15] AUBRY R, MESTREAU E L, DEY S, et al. On the ‘most normal’ normal-Part 2[J]. Communications in Numerical Methods in Engineering, 2015, 97:54-63.
[16] WANG Z, QUINTANAL J, CORRAL R. Accelerating advancing layer viscous mesh generation for 3D complex configurations[J]. Procedia Engineering, 2017, 203:128-140.
[17] PARK S, JEONG B, LEE J G, et al. Hybrid grid generation for viscous flow analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 71(7):891-909.
[18] DAWES W, HARVEY S, FELLOWS S, et al. Viscous layer meshes from level sets on Cartesian meshes:AIAA-2007-0555[R]. Reston:AIAA, 2007.
[19] DAWES W, HARVEY S, FELLOWS S, et al. A practical demonstration of scalable parallel mesh generation:AIAA-2009-0981[R]. Reston:AIAA, 2009.
[20] ZHENG Y, XIAO Z, CHEN J, ZHANG J. Novel methodology for viscous-layer meshing by the boundary element method[J]. AIAA Journal, 2018, 56(1):209-21.
[21] XIAO Z F, XU G, CHEN J J, et al. A tailored fast multipole boundary element method for viscous layer mesh generation[J]. Engineering Analysis with Boundary Elements, 2019, 99:268-280.
[22] 郑耀, 陈建军. 非结构网格生成:理论、算法和应用[M]. 北京:科学出版社, 2018:7-8. ZHENG Y, CHEN J J. Unstructured mesh generation:theories, algorithms and applications[M]. Beijing:Science Press, 2018:7-8(in Chinese).
[23] 孙岩, 邓小刚, 王光学, 等. 一种基于约束框架的棱柱网格生成方法[J]. 空气动力学学报, 2015, 33(3):319-324. SUN Y, DENG X G, WANG G X, et al. A prismatic grid generation method based on constrained frame[J]. Acta Aerodynamica Sinice, 2015, 33(3):319-324(in Chinese).
[24] 孙岩. 交互式棱柱网格生成方法[J]. 计算机辅助设计与图形学学报, 2016, 28(2):53-60. SUN Y. Interactive prismatic grid generation method[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(2):53-60(in Chinese).
[25] AUBRY R, LÖHNER R. Generation of viscous grids at ridges and corners[J]. International Journal of Numerical Methods in Engineering, 2009, 77(9):1247-1289.
[26] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[27] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[28] FRIEDMAN J, TILLICH JP. Wave equations for graphs and the edge-based Laplacian[J]. Pacific Journal of Mathematics, 2004, 216(2):229-266.
Outlines

/