Review

Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review

  • LI Jun ,
  • LI Zhiyu ,
  • LI Zhigang ,
  • ZHANG Kaiyuan ,
  • SONG Liming
Expand
  • School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2020-04-20

  Revised date: 2020-06-16

  Online published: 2020-07-27

Supported by

National Natural Science Foundation of China (51936008, 51776151)

Abstract

The combustor exit flow field is characterized by non-uniformity temperature profile (hot streaks), large swirl flow and high turbulence intensity due to the rich burn-quick quench-lean burn and lean burn premix technologies applied in modern combustors. This flow behavior significantly impacts on the aerothermal performance of the high pressure turbine stage downstream from the combustor. The aerothermal performance analysis and cooling design of the advanced high pressure turbine stage have become increasingly dependent on the non-uniformity aerothermal parameter distribution conditions at the interface between the combustor-turbine interactions. This paper elaborates the combustor-turbine interaction mechanism, introduces the representative experimental test rigs and numerical methodologies of aerothermal performance investigations of the high pressure turbine stage with combustor-turbine interactions, and respectively reviews the effects of the hot streaks, hot streaks and swirl flow, as well as swirl flow and turbulence resulted from combustor-turbine interactions on the aerothermal performance of the high pressure turbine stage. The current states and progress of aerothermal performance analysis and uncertainty qualification of the high pressure turbine stage considering combustor-turbine interactions are presented. The research achievements of aerothermal performance of the high pressure turbine stage with combustor-turbine interactions are summarized. The need for more in-depth research topics of the reliability analysis and robustness design of aerothermal performance for the high pressure turbine stage with the inlet non-uniformity aerothermal parameter distribution conditions are prospected. This paper provides reference for high performance combustor and turbine integrated design suitable for research and development requirements of advanced aeroengines.

Cite this article

LI Jun , LI Zhiyu , LI Zhigang , ZHANG Kaiyuan , SONG Liming . Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 24111 -024111 . DOI: 10.7527/S1000-6893.2020.24111

References

[1] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2):193-201.
[2] SCHNEIDER M. Robust aero-thermal design of high pressure turbines at uncertain exit conditions of low-emission combustion systems[D]. Darmstadt:Darmstadt University of Technology, 2019.
[3] MASIOL M, HARRISON R M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution:A review[J]. Atmospheric Environment, 2014, 95:409-455.
[4] BUTLER T L, SHARMA O P, JOSLYN H D, et al. Redistribution of an inlet temperature distortion in an axial flow turbine stage[J]. Journal of Propulsion and Power, 1989, 5(1):64-71.
[5] JACOBI S, MAZZONI C, ROSIC B, et al. Investigation of unsteady flow phenomena in first vane caused by combustor flow with swirl[J]. Journal of Turbomachinery, 2017, 139(4):041006.
[6] 王志多. 进口热斑等非均匀性对燃气透平高压级流动与传热特性影响的研究[D]. 西安:西安交通大学,2018. WANG Z D. Study on influence of inlet hot streak and other non-uniformities on aerodynamic and heat transfer characteristics in gas turbine stage[D]. Xi'an:Xi'an Jiaotong University, 2018(in Chinese).
[7] 赵庆军. 无导叶对转涡轮流动特性分析及其进口热斑迁移机理研究[D]. 北京:中国科学院工程热物理研究所, 2007. ZHAO Q J. Investigation on flow characteristics and migration mechanisms of inlet hot streaks in a vaneless counter-rotating turbine[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Science, 2007(in Chinese).
[8] YIN H, LIU S, FENG Y, et al. Experimental test rig for combustor-turbine interaction research and test results analysis:GT2015-42209[R]. New York:ASME, 2015.
[9] 谢金伟,刘志刚,张晓东,等. 涡轮叶栅进口热斑迁移及其影响因素研究试验装置设计[J]. 燃气涡轮试验与研究, 2018, 31(2):1-7,15. XIE J W, LIU Z G, ZHANG X D, et al. Design of an experimental apparatus for turbine cascade inlet hot streak migration and influence research[J]. Gas Turbine Experiment and Research, 2018, 31(2):1-7,15(in Chinese).
[10] ASLANIDOU I. Combustor and turbine aerothermal interactions in gas turbines with can combustors[D].Oxford:University of Oxford, 2015.
[11] BACCI T. Experimental investigation on a high pressure HGV cascade in the presence of a representative lean burn aero-engine combustor outflow[D]. Florence:University of Florence, 2017.
[12] WERSCHNIK H. Aerodynamic impact of swirl combustor inflow in endwall heat transfer and the robustness of the film cooling design in an axial turbine[D]. Darmstadt:Darmstadt University of Technology, 2017.
[13] BEARD P F, ADAMS M G, NAGAWAKAR J R, et al. The LEMCOTEC 1.5 stage film-cooled HP turbine:Design, integration and testing in the oxford turbine research facility[C]//Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2019.
[14] KRUMME A, TEGELER M, GATTERMANN S. Design, integration and operation of a rotating combustor-turbine-interaction test rig within the scope of EC FP7 project factor[C]//Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2019.
[15] REHDER H J, PAHS A, BITTNER M, et al. Next generation turbine testing at DLR:GT2017-64409[R]. New York:ASME, 2017.
[16] 蒋洪德,任静,尹洪. 燃气轮机燃烧室与透平交互作用研究进展[J]. 热力透平, 2013, 42(4):211-216, 224. JIANG H D, REN J, YIN H. Recent development of gas turbine combustor and turbine interaction effects[J]. Thermal Turbine, 2013, 42(4):211-216, 224(in Chinese).
[17] 黄家骅,王会社,赵庆军,等. 涡轮进口热斑研究的进展及展望[J]. 飞航导弹,2007(10):47-50. HUANG J H, WANG H S, ZHAO Q J, et al. Review of investigation of inlet hot streak on turbines[J]. Aerodynamic Missle Journal, 2007(10):47-50(in Chinese).
[18] SIMONE S, MONTOMOLI F, MARTELLI F, et al. Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages[J]. Journal of Turbomachinery, 2011, 134(1):011012.
[19] 丰镇平,王志多,刘兆方. 燃气透平进口热斑迁移及其影响机制研究进展[J]. 中国电机工程学报, 2014, 34(29):5120-5130. FENG Z P, WANG Z D, LIU Z F. Review on research of hot streak migration mechanisms in gas turbine stage[J]. Proceedings of the CSEE, 2014, 34(29):5120-5130(in Chinese).
[20] DORNEY D J, GUNDY-BURLET K L, SONDAK D L. A survey of hot streak experiments and simulations[J]. International Journal of Turbo Jet-Engines, 1999, 16(1):1-16.
[21] SCHWAB J R, STABE R G, WHITNEY W J. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile:AIAA-1983-1175[R]. Reston:AIAA, 1983.
[22] STABE R G, WHITNEY W J, MOFITT T P. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile:AIAA-1984-1161[R]. Reston:AIAA, 1984.
[23] DORNEY D J, DAVIS R L, EDWARDS D E, et al. Unsteady analysis of hot streak migration in a turbine stage[J]. Journal of Propulsion and Power, 1992, 8(2):520-529.
[24] DORNEY D J, GUNDY-BURLET K L. Hot-streak clocking effects in a 1-1/2 stage turbine[J]. Journal of Propulsion and Power, 1996, 12(3):619-620.
[25] ROBACK R J, DRING R P. Hot streaks and phantom cooling in a turbine rotor passage:Part 1-Separate effects[J]. Journal of Turbomachinery, 1993, 115(4):657-666.
[26] ROBACK R J, DRING R P. Hot streaks and phantom cooling in a turbine rotor passage:Part 2-Combined effects and analytical modeling[J]. Journal of Turbomachinery, 1993, 115(4):667-674.
[27] SHANG T, GUENETTE G R, EPSTEIN A H, et al. The influence of inlet temperature distortion on rotor heat transfer in a transonic turbine:AIAA-1995-3042[R]. Reston:AIAA, 1995.
[28] SHANG T, EPSTEIN A H. Analysis of hot streak effects on turbine rotor heat load[J]. Journal of Turbomachinery, 1997, 119(3):544-553.
[29] 董素艳,刘松龄,朱惠人. 涡轮级进口温度分布不均匀时流场和温度场的非定常数值模拟[J]. 西北工业大学学报, 2001, 19(3):345-348. DONG S Y, LIU S L, ZHU H R. An inviscid numerical simulation of unsteady flow in turbine stage with inlet temperature distortion[J]. Journal of Northwestern Polytechnical University, 2001, 19(3):345-348(in Chinese).
[30] 董素艳,刘松龄,朱惠人. 进口热斑对涡轮级影响的非定常数值模拟[J]. 航空动力学报, 2001, 16(3):242-248. DONG S Y, LIU S L, ZHU H R. Unsteady numerical simulation on the effects of hot streak phenomena on turbine stage[J]. Journal of Aerospace Power, 2001, 16(3):242-248(in Chinese).
[31] COLBAN W F, THOLE K A, ZESS G. Combustor turbine interface studies-Part 1:Endwall effectiveness measurements[J]. Journal of Turbomachinery, 2003, 125(2):193-202.
[32] COLBAN W F, LETHANDER A T, THOLE K A, et al. Combustor turbine interface studies-Part 2:Flow and thermal field measurements[J]. Journal of Turbomachinery, 2003, 125(2):203-209.
[33] JENKINS S, VARADARAJAN K, BOGARD D G. The effects of high mainstream turbulence and turbine vane film cooling on the dispersion of a simulated hot streak[J]. Journal of Turbomachinery, 2004, 126(1):203-211.
[34] JENKINS S C, BOGARD D G. Scaling of guide vane coolant profiles and the reduction of a simulated hot streak[J]. Journal of Turbomachinery, 2007, 129(3):619-627.
[35] 闫朝,内田澄生,坂元康郎,等. 热斑对涡轮二级静叶热负荷影响的实验和数值研究[J]. 推进技术, 2004, 25(6):517-520. YAN Z, UCHIDA S, SAKAMOTO Y, et al., Experimental and numerical investigation on the effect of hot streak on the 2nd vane in turbine[J]. Journal of Propulsion Technology, 2004, 25(6):517-520(in Chinese).
[36] 刘高文,刘松龄. 热斑在1-1/2级涡轮内的非定常迁移数值模拟[J]. 航空动力学报, 2004, 19(6):855-859. LIU G W, LIU S L. Numerical simulation of unsteady hot streak migration in a 1-1/2 stage turbine[J]. Journal of Aerospace Power, 2004, 19(6):855-859(in Chinese).
[37] 刘高文,刘松龄. 用气膜冷却来防止热斑引起的涡轮叶片过热[J]. 推进技术, 2005, 26(6):485-488. LIU G W, LIU S L. Using film cooling to keep the turbine blade from overheat induced by hot streaks[J]. Journal of Propulsion Technology, 2005, 26(6):485-488(in Chinese).
[38] HE L, HALLER B R. Influence of hot streak circumferential length-scale in transonic turbine stage:GT2004-53370[R]. New York:ASME, 2004.
[39] HE L, MENSHIKOVA V, HALLER B R. Effect of hot-streak counts on turbine blade heat load and forcing[J]. Journal of Propulsion and Power, 2007, 23(6):1235-1241.
[40] BARRINGER M D, THOLE K A, POLANKA M D. Developing a combustor simulator for investigating high pressure turbine aerodynamics and heat transfer:GT2004-53613[R]. New York:ASME, 2004.
[41] BARRINGER M D, THOLE K A, POLANKA M D. Experimental evaluation of an inlet profile generator for high pressure turbine tests[J]. Journal of Turbomachinery, 2007, 129(2):382-393.
[42] BARRINGER M D, THOLE K A, POLANKA M D, et al. Migration of combustor exit profiles through high pressure turbine vanes[J]. Journal of Turbomachinery, 2009, 131(4):021010.
[43] BARRINGER M D, THOLE K A, POLANKA M D. Effects of combustor exit profiles on vane aerodynamic loading and heat transfer in a high pressure turbine[J]. Journal of Turbomachinery, 2009, 131(2):021008.
[44] AN B, LIU J, JIANG H. Numerical investigation on unsteady effects of hot streak on flow and heat transfer in a turbine stage[J]. Journal of Turbomachinery, 2009, 131(7):031015.
[45] 李宇,邹正平,刘火星,等. 叶片安装角偏差对涡轮通道内热斑迁移的影响[J]. 工程热物理学报, 2009, 30(6):944-948. LI Y, ZOU Z P, LIU H X, et al. Influence of blade-stagger departure on the migration of hot streak in turbine stage[J]. Journal of Engineering Thermophysics, 2009, 30(6):944-948(in Chinese).
[46] POVEY T, CHANA K S, JONES T V, et al. The effect of hot streak on HP vane surface and endwall heat transfer:An experimental and numerical study[J]. Journal of Turbomachinery, 2007, 129(1):32-43.
[47] POVEY T, QURESHI I. Developments in hot-streak simulators for turbine testing[J]. Journal of Turbomachinery, 2009, 131(3):031009.
[48] QURESHI I, BERETTA A, POVEY T. Effect of simulated combustor temperature nonuniformity on HP vane and end wall heat transfer:An experimental and computational investigation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 133(3):031901.
[49] QURESHI I, SMITH A D, CHANA K S, et al. Effect of temperature nonuniformity on heat transfer in an unshrouded transonic HP turbine:An experimental and computational investigation[J]. Journal of Turbomachinery, 2012, 134(1):011005.
[50] QURESHI I, SMITH A, POVEY T. HP vane aerodynamics and heat transfer in the presence of aggressive inlet swirl[J]. Journal of Turbomachinery, 2012, 135(2):021040.
[51] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part I:Vane inlet temperature profile generation and migration[J]. Journal of Turbomachinery, 2012, 134(1):011006.
[52] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part Ⅱ:Influence of inlet temperature profile on blade row and shroud[J]. Journal of Turbomachinery, 2012, 134(1):011007.
[53] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part Ⅲ:Impact of hot-streak characteristics on blade row heat flux[J]. Journal of Turbomachinery, 2012, 134(1):011008.
[54] ONG J, MILLER R J. Hot streak and vane coolant migration in a downstream rotor[J]. Journal of Turbomachinery, 2012, 134(5):051002.
[55] 薛伟鹏,曾军,黄康才. 热斑迁移路径分析方法[J]. 航空动力学报, 2013, 28(10):2302-2307. XUE W P, ZENG J, HUANG K C. Analysis method of hot streak migration avenue[J]. Journal of Aerospace Power, 2013, 28(10):2302-2307(in Chinese).
[56] KOUPPER C, CACIOLLI G A, GICQUEL L, et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbomachinery, 2014, 137(11):111007.
[57] 李雪英,任静,蒋洪德. 燃烧室温度剖面对静叶端壁冷却的影响[J]. 工程热物理学报, 2015, 36(4):752-755. LI X Y, REN J, JIANG H D. The influence of combustor outlet temperature profile on a vane endwall[J]. Journal of Engineering Thermophysics, 2015, 36(4):752-755(in Chinese).
[58] 刘兆方,王志多,丰镇平. 叶栅通道内热斑迁移受动静干涉和叶顶间隙高度影响的研究[J]. 工程热物理学报, 2015, 36(11):2344-2347. LIU Z F, WANG Z D, FENG Z P. Effect of rotor/stator interaction and tip clearance height on hot streak migration in turbine passage[J]. Journal of Engineering Thermophysics, 2015, 36(11):2344-2347(in Chinese).
[59] 王志多,张文豪,刘兆方,等. 存在热斑及总压梯度时静叶正弯对透平级气热特性的影响[J]. 工程热物理学报, 2016, 37(4):734-740. WANG Z D, ZHANG W H, LIU Z F, et al. Effects of vane position lean on aero-thermal performance of a high pressure turbine with inlet hot streak and pressure nonuniformity[J]. Journal of Engineering Thermophysics, 2016, 37(4):734-740(in Chinese).
[60] FENG Z, LIU Z, SHI Y. Effects of hot streak and airfoil clocking on heat transfer and aerodynamic characteristics in gas turbine[J]. Journal of Turbomachinery, 2016, 138(2):021002.
[61] WANG Z, LIU Z, FENG Z. Influence of mainstream turbulence intensity on heat transfer characteristics of a high pressure turbine stage with inlet hot streak[J]. Journal of Turbomachinery, 2016, 138(4):041005.
[62] CHI Z, LIU H, ZANG S, et al. Full-annulus URANS study on the transportation of combustion inhomogeneity in a four-stage cooled turbine[J]. Journal of Turbomachinery, 2019, 141(11):111003.
[63] 王天壹,宣益民. 热斑迁移路径上非定常气膜冷却特性研究[J]. 工程热物理学报, 2018, 39(9):1991-1996. WANG T Y, XUAN Y M. Investigation of unsteady film cooling characteristics on the hot streak mogration path[J]. Journal of Engineering Thermophysics, 2018, 39(9):1991-1996(in Chinese).
[64] GAETANI P, PERSICO G, PINELLI L, et al. Computational and experimental study of hot streak transport within the first stage of a gas turbine:GT2019-91276[R]. New York:ASME, 2019.
[65] JI L C, XU J Z, CHEN J. Study of hot streak effects in a counter-rotating turbine:2001-GT-0173[R]. New York:ASME, 2001.
[66] 季路成,杨吉,徐建中. 关于1+1对转涡轮中热痕现象的研究[J]. 工程热物理学报, 2001, 22(6):683-686. JI L C, YANG J, XU J Z. Investigations about the hot streak in the counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2001, 22(6):683-686(in Chinese).
[67] 王宝臣,季路成. 缘线匹配指导下热痕迁移现象的数值研究[J]. 工程热物理学报, 2009, 29(5):751-754. WANG B C, JI L C. Numerical investigation on hot streak migration under the guidance of edge-matching technology[J]. Journal of Engineering Thermophysics, 2009, 29(5):751-754(in Chinese).
[68] ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical investigation on the influence of hot streak temperature ratio in a high-pressure stage of vaneless counter-rotating turbine[J]. International Journal of Rotating Machinery, 2007, 2007:056097.
[69] 赵庆军,王会社,赵晓路,等. 无导叶对转涡轮进口热斑迁移特性分析[J]. 工程热物理学报, 2007, 28(1):40-42. ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical investigation of 3-D unsteady hot streak migration in a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2007, 28(1):40-42(in Chinese).
[70] 赵庆军,杨中,王会社,等. 进口热斑径向作用位置对无导叶对转涡轮高压级温度场的影响[J]. 工程热物理学报, 2008, 131(3):1629-1652. ZHAO Q J, YANG Z, WANG H S, et al. Effects of radial location of inlet hot streak on temperature distribution in high pressure stage of a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2008, 131(3):1629-1652(in Chinese).
[71] 赵庆军,王会社,唐菲,等. 进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析[J]. 中国科学E辑:技术科学, 2008, 38(1):55-71. ZHAO Q J, WANG H S, TANG F, et al. Investigation of influencing factors of hot streaks migration in high pressure stage of a vaneless counter-rotating turbine[J]. Science in China Series E-Technological Science, 2008, 38(1):55-71(in Chinese).
[72] ZHAO Q J, WANG H S, ZHAO X L, et al. Tip-clearance effects on hot-streak migration in low-pressure stage of vaneless counter-rotating turbine[J]. Journal of Propulsion and Power, 2009, 25(4):940-948.
[73] KHANAL B, HE L, NORTHALL J, et al. Analysis of radial migration of hot-streak in swirl flow through high-pressure turbine stage[J]. Journal of Turbomachinery, 2013, 135(7):041005.
[74] ADAMS M G, POVEY T, HALL B F, et al. Commissioning of a combined hot-streak and swirl profile generator in a transonic turbine test facility[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(3):031008.
[75] SALVADORI S, OTTANELLI L, JONSSON M, et al. Investigation of high-pressure turbine endwall film-cooling performance under realistic inlet conditions[J]. Journal of Propulsion and Power, 2012, 28(4):799-810.
[76] GILLER L, SCHIFFER H P. Interactions between the combustor swirl and the high pressure stator of a turbine:GT2012-69157[R]. New York:ASME, 2012.
[77] QURESHI I, BERETTA A, CHANA K, et al. Effects of aggressive inlet swirl on heat transfer and aerodynamics in an unshrouded transonic HP turbine[J]. Journal of Turbomachinery, 2012, 134(11):061023.
[78] ANDREINI A, CACIOLLI G, FACCHINI B, et al. Experimental investigation of the flow field and the heat transfer on a scaled cooled combustor liner with realistic swirling flow generated by a lean-burn injection system[J]. Journal of Turbomachinery, 2014, 137(3):031012.
[79] SCHMID G, KRICHBAUM A, WERSCHNIK H, et al. The impact of realistic inlet swirl in a 1-1/2 stage axial turbine:GT2014-26716[R]. New York:ASME, 2014.
[80] 刘兆方,王志多,丰镇平. 燃气透平进口旋流对热斑迁移及动叶热负荷影响的研究[J]. 工程热物理学报, 2016, 37(8):1641-1647. LIU Z F, WANG Z D, FENG Z P. Study on the effect of inlet swirl on hot streak migration and rotor heat load in gas turbine[J]. Journal of Engineering Thermophysics, 2016, 37(8):1641-1647(in Chinese).
[81] 李毅飞,马灿,苏欣荣,等. 热斑旋流对燃气透平高压静叶的影响研究[J]. 工程热物理学报, 2016, 37(6):1189-1193. LI Y F, MA C, SU X R, et al. The effect of hot streak and swirl in nozzle guide vane passage of gas turbine[J]. Journal of Engineering Thermophysics, 2016, 37(6):1189-1193(in Chinese).
[82] PERDICHIZZI A, ABDEH H, BARIGOZZI G, et al. Aerothermal performance of a nozzle vane cascade with a generic nonuniform inlet flow condition-Part I:Influence of nonuniformity location[J]. Journal of Turbomachinery, 2017, 139(3):031002.
[83] BARIGOZZI G, PERDICHIZZI A, ABDEH H, et al. Aerothermal performance of a nozzle vane cascade with a generic nonuniform inlet flow condition-Part Ⅱ:Influence of purge and film cooling injection[J]. Journal of Turbomachinery, 2017, 139(10):101004.
[84] WERSCHNIK H, SCHIFFER H P, STEINHAUSEN C. Robustness of turbine endwall film cooling design to swirling combustor inflow[J]. Journal of Propulsion and Power, 2017, 33(4):917-926.
[85] BACCI T, LENZI T, PICCHI A, et al. Flow field and hot streak migration through a high pressure cooled vanes with representative lean burn combustor outflow[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4):041020.
[86] CUBEDA S, MAZZEI L, BACCI T, et al. Impact of predicted combustor outlet conditions on the aerothermal performance of film-cooled high pressure turbine vanes[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(5):051011.
[87] 王志多,牟善聪,王志豪,等. 进口旋流对热斑和端壁槽缝泄漏流迁移影响的研究[J]. 工程热物理学报, 2019, 40(2):275-281. WANG Z D, MU S C, WANG Z H, et al. Effects of inlet swirl on the migration of hot streak and endwall slot leakage flow[J]. Journal of Engineering Thermophysics, 2019, 40(2):275-281(in Chinese).
[88] KRUMME A, BUSKE C, BACHNER J R, et al. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig:Part 1- Experimental results:GT2019-90733[R]. New York:ASME, 2019.
[89] GOEVERT S, FEDERICO F, KRUMME A, et al. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig:Part 2- Numerical modelling and simulation:GT2019-90736[R]. New York:ASME, 2019.
[90] BEARD P F, SMITH A D, POVEY T. Effect of combustor swirl on transonic high pressure turbine efficiency[J]. Journal of Turbomachinery, 2014, 136(1):011002.
[91] JOHANSSON M, POVEY T, CHANA K, et al. Effect of low-NOX combustor swirl clocking on intermediate turbine duct vane aerodynamics with an upstream high pressure turbine stage-An experimental and computational study[J]. Journal of Turbomachinery, 2017, 139(1):011006.
[92] WERSCHNIK H, HILGERT J, WILHELM M, et al. Influence of combustor swirl on endwall heat transfer and film cooling effectiveness at the large scale turbine rig[J]. Journal of Turbomachinery, 2017, 139(8):081007.
[93] BACCI T, BECCHI R, PICCHI A, et al. Adiabatic effectiveness on high-pressure turbine nozzle guide vanes under realistic swirling conditions[J]. Journal of Turbomachinery, 2019, 141(1):011009.
[94] ABDEH H, BARIGOZZI G, PERDICHIZZI A, et al. Incidence effect on the aero-thermal performance of a film cooled nozzle vane cascade[J]. Journal of Turbomachinery, 2019, 141(5):051005.
[95] CHA C M, HONG S, IRELAND P T, et al. Experimental and numerical investigation of combustor-turbine interaction using an isothermal, nonreacting tracer[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(8):081501.
[96] TURNER M G, RYDER R, NORRIS A, et al. High fidelity 3D turbofan engine simulation with emphasis on turbomachinery-combustor coupling:AIAA-2002-3769[R]. Reston:AIAA, 2002.
[97] ANDREINI A, BACCI T, INSINNA M, et al. Hybrid RANS-LES modeling of the aerothermal field in an annular hot streak generator for the study of combustor-turbine interaction[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2):021508.
[98] MIKI K, MODER J, LIOU M S. Computational study of combustor-turbine interaction[J]. Journal of Propulsion and Power, 2018, 34(6):1529-1541.
[99] MUIRHEAD K, LYNCH S. Computational study of combustor dilution flow interaction with turbine vanes[J]. Journal of Propulsion and Power, 2019, 35(1):54-71.
[100] KOUPPER C, BONNEAU G, GICQUEL L, et al. Large eddy simulations of the combustor turbine interface:Study of the potential and clocking effects:GT2016-56443[R]. New York:ASME, 2016.
[101] DUCHAIN F, DOMBARD J, GICQUEL L, et al. Integrated large eddy simulation of combustor and turbine interactions:Effect of turbine stage inlet condition:GT2017-63473[R]. New York:ASME, 2017.
[102] VAGNOLI S. Assessment of advanced numerical methods for the aero-thermal investigation of combustor-turbine interactions[D]. Florence:University of Florence, 2016.
[103] SCHNEIDER M, SCHIFFER H P, LEHMANN K. Uncertainty propagation analyses of lean burn combustor exit conditions for a robust nozzle cooling design[J]. Journal of Turbomachinery, 2020, 142(5):051003.
Outlines

/