Nonlinear filtering for spaceborne radars based on variational Bayes

  • YAN Wenxu ,
  • LAN Hua ,
  • WANG Zengfu ,
  • JIN Shuling ,
  • PAN Quan
Expand
  • 1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
    2. Key Laboratory of Information Fusion Technology, Ministry of Education, Xi'an 710129, China;
    3. China Electronics Technology Group Corporation 38th Research Institute, Hefei 230088 China

Received date: 2020-06-11

  Revised date: 2020-06-25

  Online published: 2020-07-17

Supported by

National Natural Science Foundation of China (61873211)

Abstract

Spaceborne radars play an important role in early warning defense systems because of their unique advantages such as wide detection range, long distance and all-weather surveillance capability. Due to the high-speed movement of the platform and the strong nonlinear observation function, high-accuracy target tracking for spaceborne radars is difficult. In this paper, we propose a variational Bayes-based nonlinear filtering method, which transforms the nonlinear state estimation problem into an optimization problem. The analytical solution is obtained via a closed-loop iteration manner. Moreover, a pitch angle estimation method is presented using the a priori information of target height. Simulation results show that, compared with the extended Kalman filter, unscented Kalman filter, and the converted measurement Kalman filter, the proposed variational Bayes-based nonlinear filtering method achieves the best estimation accuracy.

Cite this article

YAN Wenxu , LAN Hua , WANG Zengfu , JIN Shuling , PAN Quan . Nonlinear filtering for spaceborne radars based on variational Bayes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(S2) : 724395 -724395 . DOI: 10.7527/S1000-6893.2020.24395

References

[1] EINICKE G A, WHITE L B. Robust extended Kalman filtering[J]. IEEE Transactions on Signal Processing, 1999, 47(9):2596-2599.
[2] BELL B M, CATHEY F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Transactions on Automatic Control, 1993, 38(2):294-297.
[3] HU J, WANG Z, GAO H, et al. Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements[J]. Automatica, 2012, 48:2007-2015.
[4] HU X, BAO M, ZHANG X, et al. Generalized iterated Kalman filter and its performance evaluation[J]. IEEE Transaction on Signal Processing, 2015, 63:3204-3217.
[5] JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear systems[C]//Proceedings of Spie, 1997:182-193.
[6] Wan E A, VAN DER MERWE R.The unscented Kalman filter for nonlinear estimation[C]//Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium. Piscataway:IEEE Press, 2000:153-158.
[7] JULIER S J,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
[8] GUSTAFSSON F,HENDEBY G. Some relations between extended and unscented Kalman filters[J]. IEEE Transaction on Signal Processing, 2012,60:545-555.
[9] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transaction on Automatic Control, 2009,54:1254-1269.
[10] ARASARATNAM I, HAYKIN S, HURD T R. Cubature Kalman filtering for continuous-discrete systems:Theory and simulations[J]. IEEE Transaction on Signal Processing, 2010,58:4977-4933.
[11] MERWE R V D,WAN E A. Sigma-point Kalman filters for integrated navigation[C]//60th Annual Meeting of the Institute of Navigation, 2004:641-645.
[12] 杨春玲,刘国岁,倪晋麟.基于转换坐标卡尔曼滤波算法的雷达目标跟踪[J].现代雷达,1988, 20(5):48-54. YANG C L, LIU G S, NI J L. Radar target tracking based on transformed coordinate Kalman filter algorithm[J].Modern Radar, 1988, 20(5):48-54(in Chinese).
[13] LERRO D, BARSHALOM Y. Tracking with debiased consistent converted measurement vs. EKF[J]. IEEE Transactions on Aerospace and Electronic systems, 1993,29(3):1015-1022.
[14] SONG X,ZHOU Y,BARSHALOM Y. Unbiased converted measurement for tracking[J]. IEEE Transactions on Aerospace and Electronic systems, 1998,34(3):1023-1027.
[15] GORDON N J,SALMOND D J,SMITH A F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]//IEEE Proceedings F-Radar and Signal Processing, 1993,140:107-113.
[16] DOUCET A,GODSILL S,ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000,10(3):197-208.
[17] CAPPE O,GODSILL S J,MOULINES E. An overview of existing methods and recent advances in sequential Monte Carlo[J]. Proceeding of the IEEE, 2007,95:899-924.
[18] BEAL M J. Variational algorithms for approximate Bayesian inference[D].Cambridge:Cambridge University,2003.
[19] SMIDL V,QUINN A. Variational Bayesian filtering[J]. IEEE Transactions on Signal Processing, 2008,56(10):5020-5030.
[20] FRIGOLA R,CHEN Y,RASMUSSEN C. Varoational Gaussian process state-space models[C]//Advances in Neural Information Processing Systems, 2014:3680-3688.
[21] AIT-E1-FQUIH B,HOTEIT I. A variational Bayesian multiple particle filtering scheme for large-dimensional systems[J]. IEEE Transactions on Signal Processing, 2016,64(20):5409-5422.
[22] GULTEKIN S,PAISLEY J. Nonlinear Kalman filtering with divergence minimization[J]. IEEE Transactions on Signal Processing, 2017:65,6319-6331.
[23] HU Y M,WANG X Z,LAN H,et al. An iterative nonlinear filter using variational bayesian optimization[J]. Sensors, 2018,18(12):4222.
[24] TSENG P. An analysis of the EM algorithm and entropy-like proximal point methods[J]. Mathematics of Operations Research, 2004, 29:27-44.
Outlines

/