To improve the optimality, robustness and adaptability of the guidance method for the launch vehicle in case of thrust fault outside the atmosphere, this paper proposes an improved iterative guidance method which derives the transversality condition with five orbital elements as the terminal constraint using the analytical expression based on the optimal control theory as the optimal control solution, thereby enhancing the optimization of the algorithm. In the iterative process, a Gauss Legendre integral method is adopted to calculate the thrust integral, and a Taylor polynomial approximation method is used to calculate the gravity integral, improving the integration accuracy in the fault mode. The proposed method adopts the dimension reduction iteration mode and the reasonable limiting of the control variables to ensure the real-timeness and convergence of the algorithm under the condition of thrust fault. The simulation results based on the Monte Carlo method and thrust fault conditions show the strong optimality, robustness and fault adaptability of the proposed method.
MA Zongzhan
,
XU Zhi
,
TANG Shuo
,
ZHANG Qian
. Improved iterative guidance method for launch vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(2)
: 324218
-324218
.
DOI: 10.7527/S1000-6893.2020.24218
[1] JING W, ZHENG X, WEI P, et al. An ascent iterative guidance algorithm for solid rocket concerned with multiconstraints[C]//The 27th Chinese Control and Decision Conference (2015 CCDC). Piscataway:IEEE Press, 2015.
[2] 吕新广, 宋征宇. 长征运载火箭制导方法[J]. 宇航学报, 2017, 38(9):895-902. LV X G, SONG Z Y. Guidance methods of Long-March launch vehicles[J]. Journal of Astronautics, 2017, 38(9):895-902(in Chinese).
[3] 宋征宇. 从准确、精确到精益求精——载人航天推动运载火箭制导方法的发展[J]. 航天控制, 2013, 31(1):4-10. SONG Z Y. From accurate, precise to perfect——manned space promotes the development of guidance method on launch vehicle[J]. Aerospace Control, 2013, 31(1):4-10(in Chinese).
[4] HAEUSSERMANN W. Guidance and control of Saturn launch vehicles[C]//AIAA 2nd Annual Meeting. Reston:AIAA, 1965.
[5] CHANDLER D C, SMITH I E. Development of the iterative guidance mode with its application to various vehicles and missions[J]. Journal of Spacecraft and Rockets, 1967,4(7):898-903.
[6] BRAND T J, BROWN D W, HIGGINS J P. Space shuttle GNC equation document NO. 24 unified powered flight guidance:NAS9-10268[R]. Washington, D.C.:NASA, 1973.
[7] MCHENRY R L, LONG A D, COCKRELL B F, et al. Space shuttle ascent guidance, navigation, and control[J]. Journal of the Astronautical Sciences, 1979, 27(1):1-38.
[8] JAGGERS R F. Asymmetrical booster ascent guidance and control system design study. Volume 5:Space shuttle powered explicit guidance:NASA CR 140191[R]. Washington, D.C.:NASA, 1974.
[9] JAGGERS R F. An explicit solution to the exoatmopheric powered flight guidance and trajectory optimization problem for rocket propelled vehicles[C]//AIAA Guidance and Control Conference. Reston:AIAA, 1977.
[10] VON DER PORTEN P, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for Space Launch System Block-1 and Block-1B vehicles[C]//41st AAS GNC Conference, 2018.
[11] 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J].宇航学报, 2003, 24(5):484-489. CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003, 24(5):484-489(in Chinese).
[12] 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学E辑:技术科学, 2009,39(4):696-706. RU J X. An iterative guidance method for liquid launch vehicle[J]. Science in China Series E:Technological Sciences, 2009, 39(4):696-706(in Chinese).
[13] BROWN K, JOHNSON G. Real-time optimal guidance[J]. IEEE Transactions on Automatic Control, 1967, 12(5):501-506.
[14] BROWN K R, HAROLD E F, JOHNSON G W. Some new results on space shuttle atmospheric ascent optimization[C]//Guidance, Control and Flight Mechanics Conference, 1970.
[15] DUKEMAN G, CALISE A. Enhancements to an atmospheric ascent guidance algorithm[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2003.
[16] LU P, GRIFFIN B J, DUKEMAN G A, et al. Rapid optimal multiburn ascent planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1656-1664.
[17] LU P, PAN B. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2):404-414.
[18] 傅瑜, 陈功, 卢宝刚, 等. 基于最优解析解的运载火箭大气层外自适应迭代制导方法[J]. 航空学报, 2011, 32(9):1696-1704. FU Y, CHEN G, LU B G, et al. A vacuum adaptive iterative guidance method of launch vehicle based on optimal analytical solution[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1696-1704(in Chinese).
[19] 邓逸凡, 李超兵, 王志刚. 一种基于轨道要素形式终端约束的航天器空间变轨迭代制导算法[J]. 航空学报, 2015, 36(6):1975-1982. DENG Y F, LI C B, WANG Z G. An iterative guidance algorithm using orbital elements as terminal constraints for spacecraft orbit transfer[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(6):1975-1982(in Chinese).
[20] 李超兵, 吕春红, 尚腾. 一种基于轨道根数约束的最优制导方法[J]. 航空学报, 2018, 39(4):203-212. LI C B, LV C H, SHANG T. An optimal guidance method based on orbital element constraints[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(4):203-212(in Chinese).
[21] AHMAD N, HAWKINS M, VON DERPORTEN P, et al. Closed loop guidance trade study for Space Launch System Block-1B vehicle[C]//41st AAS GNC Conference, 2018.
[22] 周凤岐,周军,郭建国. 现代控制理论基础[M]. 西安:西北工业大学出版社,2011. ZHOU F Q, ZHOU J, GUO J G. Theoretical basis of modern control[M]. Xi'an:Northwest University of Technology Press, 2011.