Material Engineering and Mechanical Manufacturing

Error compensation method for mobile robot positioning based on error similarity

  • SHI Zhanghu ,
  • HE Xiaoxu ,
  • ZENG Debiao ,
  • LEI Pei
Expand
  • 1. College of Mechanical and Electronical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Chengdu Aircraft Industrial(Group) Co. Ltd, Chengdu 610092, China;
    3. Sichuan Aviation Intelligent Manufacturing Equipment Engineering Technology Research Center, Chengdu 610092, China

Received date: 2020-04-16

  Revised date: 2020-05-13

  Online published: 2020-07-17

Abstract

A positioning error compensation method for the AGV based drilling robot is studied in this paper. In this kind of robotic drilling system for aircraft assembly, the measuring coordinate system is constructed by the laser tracker, and the method of switching station for the AGV based drilling robot is proposed, which can better adapt to the characteristics of multiple varieties and small batches of aircraft manufacturing. Furthermore, based on the analysis of the positioning error source, a spatial interpolation and error compensation method depending on the inverse distance weighting is proposed for the AGV based drilling robot, overcoming the deficiency of the existing error compensation method. An experiment is conducted to obtain the optimal grid step for the KUKA KR480 industrial robot mounted on an AGV. The experimental result shows that, because of the implementation of this method, the average absolute positioning error is reduced from 1.045 mm to 0.227 mm, and the maximum absolute positioning error is reduced by 82.47%, from 2.727 mm to 0.478 mm, suggesting that this method can effectively improve the absolute positioning accuracy of the AGV based drilling robot.

Cite this article

SHI Zhanghu , HE Xiaoxu , ZENG Debiao , LEI Pei . Error compensation method for mobile robot positioning based on error similarity[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(11) : 424105 -424105 . DOI: 10.7527/S1000-6893.2020.24105

References

[1] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chineses).
[2] 齐俊德, 张定华, 李山, 等. 考虑测量空间的机器人绝对定位精度标定[J]. 机械科学与技术, 2020, 39(1):68-73. QI J D, ZHANG D H, LI S, et al. Calibration of absolute positioning accuracy of robots considering measurement space[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1):68-73(in Chinese).
[3] 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12):2823-2832. QU W W, HOU P H, YANG G J, et al. Study on the stiffness performance for robot machining system[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2823-2832(in Chinese).
[4] 张振邦, 曲兴华, 张福民. PID参数对机器人在线力补偿的影响[J]. 电子测量与仪器学报, 2018, 32(3):142-148. ZHANG Z B, QU X H, ZHANG F M. Effect of PID parameter on online force compensation of robot[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(3):142-148(in Chinese).
[5] 温秀兰, 崔俊宇, 芮平, 等. 轴线测量与迭代补偿的机器人几何参数标定[J]. 计量学报, 2018, 39(4):449-454. WEN X L, CUI J Y, RUI P, et al. Robot geometric parameters calibration based on axis measurement and iterative compensation[J]. Acta Metrologica Sinica, 2018, 39(4):449-454(in Chinese).
[6] 何庆稀, 游震洲, 孔向东. 一种基于位姿反馈的工业机器人定位补偿方法[J]. 中国机械工程, 2016, 27(7):872-876. HE Q X, YOU Z Z, KONG X D. Positioning error compensation method of industrial robot based on closed-loop feedback of position and orientation[J]. China Mechanical Engineering, 2016, 27(7):872-876(in Chinese).
[7] ROTH Z S, MOORING B, RAVANI B. An overview of robot calibration[J]. IEEE Journal of Robotics and Automation, 1987, 3(5):377-385.
[8] 李永泉, 吴鹏涛, 张阳, 等. 球面二自由度冗余驱动并联机器人系统动力学参数辨识及控制[J]. 中国机械工程, 2019, 30(16):1967-1975. LI Y Q, WU P T, ZHANG Y, et al. Dynamics parameter identification and control of spherical 2-DOF redundant driven parallel robot system[J]. China Mechanical Engineering, 2019, 30(16):1967-1975(in Chinese).
[9] GINANI L S, MOTTA J M S. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(1):15-21.
[10] 董辉跃, 周华飞, 尹富成. 机器人自动制孔中绝对定位误差的分析与补偿[J]. 航空学报, 2015, 36(7):2475-2484. DONG H Y, ZHOU H F, YIN F C. Analysis and compensation for absolute positioning error of robot in automatic drilling[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2475-2484(in Chinese).
[11] 何晓煦, 田威, 曾远帆, 等. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4):420538. HE X X, TIAN W, ZENG Y F, et al. Robot positioning error and residual error compensation for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):420538(in Chinese).
[12] FILION A, JOUBAIR A, TAHAN A, et al. Robot calibration using a portable photogrammetry system[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49(2):77-87.
[13] ZENG Y F, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120.
[14] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017,88:2745-2755.
[15] 李力, 王耀南, 刘洪剑, 等. 旋翼飞行机器人视觉定位方法及系统[J]. 机器人, 2016, 38(1):8-16. LI L, WANG Y N, LIU H J, et al. Visual positioning method and system for rotor flying robot[J]. Robot, 2016, 38(1):8-16(in Chinese).
[16] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese).
[17] 周炜, 廖文和, 田威, 等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程, 2012, 23(19):2306-2311. ZHOU W, LIAO W H, TIAN W, et al. Robot accuracy compensation method of spatial grid for aircraft automatic assembly[J]. China Mechanical Engineering, 2012, 23(19):2306-2311(in Chinese).
[18] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3):42-48. ZHOU W, LIAO W H, TIAN W. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48(in Chinese).
[19] 何胜强. 大型飞机数字化装配技术与装备[M]. 北京:航空工业出版社, 2013:264-272. HE S Q. Digital assembly technologies and equipments of the jumbo aircraft[M]. Beijing:Aviation Industry Press, 2013:264-272(in Chinese).
[20] CHARLES F V L. Generalizing the singular value decomposition[J]. SIAM Journal on Numerical Analysis, 1976, 13(1):76-83.
[21] 焦国太, 冯永和, 王锋, 等. 多因素影响下的机器人综合位姿误差分析方法[J]. 应用基础与工程科学学报, 2005, 12(4):435-442. JIAO G T, FENG Y H, WANG F, et al. Synthetically analysis of the robot pose error resulting from various factors[J]. Journal of Basic Science and Engineering, 2005, 12(4):435-442(in Chinese).
[22] RENDERS J M, ROSSIGNOL E, BECQUET M, et al. Kinematic calibration and geometrical parameter identification for robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6):721-732.
Outlines

/