Electronics and Electrical Engineering and Control

Trajectory planning for parafoil system considering dynamic constraints in complicated environment

  • SUN Hao ,
  • SUN Qinglin ,
  • TENG Haishan ,
  • ZHOU Peng ,
  • CHEN Zengqiang
Expand
  • 1. College of Artificial Intelligence, Nankai University, Tianjin 300350;
    2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094;
    3. Laboratory of Aerospace Entry, Descent and Landing Technology, China Aerospace Science and Technology Corporation, Beijing 100094

Received date: 2020-05-27

  Revised date: 2020-06-15

  Online published: 2020-07-06

Supported by

The National Natural Science Foundation of China(61973172, 61973175,62003177); The Key Technologies Research and Development Program of Tianjin(19 JCZDJC32800); China Postdoctoral Science Foundation(2020M670633, 2020M670045)

Abstract

Because of the large inertia and strong nonlinearity of the parafoil system, the object trajectory based on the mass model cannot satisfy the dynamic constraints of the parafoil under complicated terrain conditions. Therefore, application of high-order dynamic models to trajectory planning becomes an inevitable trend in calculating a real system trajectory. However, the dynamic model of the parafoil is complicated. Currently, one of the urgent problems to be solved is to ensure smooth and stable trajectories. To overcome this difficulty, this study builds an accurate six degree-of-freedom dynamic model of the parafoil which is then introduced into the trajectory planning. A multi-stage trajectory planning strategy is designed by improving the Gauss pseudo-spectrum method based on segment point planning, initial discrete point planning and discrete point self-configuration. The simulation results show the effectiveness of the proposed algorithm in overcoming the difficulty of obtaining a stable trajectory with a dynamic model by the traditional planning method. Accurate terrain avoidance is realized under complex external conditions, and the planning trajectory can satisfy the dynamic constraints of the parafoil.

Cite this article

SUN Hao , SUN Qinglin , TENG Haishan , ZHOU Peng , CHEN Zengqiang . Trajectory planning for parafoil system considering dynamic constraints in complicated environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(3) : 324301 -324301 . DOI: 10.7527/S1000-6893.2020.24301

References

[1] MONTALVO C, COSTELLO M. Avoiding lockout instability for towed parafoil systems[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(5):985-995.
[2] TANAKA M, TANAKA K, WANG H. Practical model construction and stable control of an unmanned aerial vehicle with a parafoil-type wing[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 49(6):1291-1297.
[3] WARD M, MARK C. Adaptive glide slope control for parafoil and payload aircraft[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4):1019-1034.
[4] DUNKER S, HUISKEN J, MONTAGUE D, et al. Guided Parafoil High Altitude Research (GPHAR) flight at 57,122 ft[C]//AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015.
[5] CACAN M, COSTELLO M, SCHEUERMANN E. Global positioning system denied navigation of autonomous parafoil systems using beacon measurements from a single location[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(4):041004.
[6] DEK C, OVERKAMP J, TOETER A, et al. A recovery system for the key components of the first stage of a heavy launch vehicle[J]. Aerospace Science and Technology, 2020, 100:105778.
[7] SUN H, SUN Q, LUO S, et al. In-flight compound homing methodology of parafoil delivery systems under multiple constraints[J]. Aerospace Science and Technology, 2018, 79:85-104.
[8] ZHANG L, GAO H, CHEN Z, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1-2):1-8.
[9] FOWLER L, ROGERS J. Bezier curve path planning for parafoil terminal guidance[J]. Journal of Aerospace Information Systems, 2014, 11(5):300-315.
[10] SLEGERS N, BROWN A, ROGERS J. Experimental investigation of stochastic parafoil guidance using a graphics processing unit[J]. Control Engineering Practice, 2015, 36:27-38.
[11] ROGERS J, SLEGERS N. Robust parafoil terminal guidance using massively parallel processing[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1336-1345.
[12] CHIEL B, DEVER C. Autonomous parafoil guidance in high winds[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(5):963-969.
[13] 胡文治, 陈建平, 张红英, 等.翼伞系统分段归航轨迹的优化设计[J].航空计算技术,2017,47(6):55-59. HU W Z, CHEN J P, ZHANG H Y, et al. Design and optimization in multiphase homing trajectory of parafoil system[J]. Aeronautical Computing Technique, 2017, 47(6):55-59(in Chinese).
[14] CHEN Q, SUN Y, ZHAO M, et al. A virtual structure formation guidance strategy for multi-parafoil systems[J]. IEEE Access, 2019, 7:123592-123603.
[15] 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10):3121-3130. CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3121-3130(in Chinese).
[16] LI C, TENG H, ZHU Y, et al. Design and simulation for large parafoil fix line object homing algorithm[J]. Journal of Central South University, 2016, 23(9):2276-2283.
[17] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1003-1011. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015, 32(8):1003-1011(in Chinese).
[18] NIE S, CAO Y, WU Z. Numerical simulation of parafoil inflation via a Robin-Neumann transmission-based approach[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(4):797-810.
[19] YU L, HAN C, ZHAN Y, et al. Study of parachute inflation process using fluid-structure interaction method[J]. Chinese Journal of Aeronautics, 2014, 27(2):272-279.
[20] DEVALLA V, JAISWAL R, MONDAL A, et al. Estimation of lateral directional aerodynamic derivatives from flight data of unmanned powered parafoil aerial vehicle[C]//In 2018 Atmospheric Flight Mechanics Conference, 2018:3156.
[21] YANG H, SONG L, CHEN W. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5):1670-1680.
[22] LI B, HE Y, HAN J, et al. A new modeling scheme for powered parafoil unmanned aerial vehicle platforms:Theory and experiments[J]. Chinese Journal of Aeronautics, 2019, 32(11):2466-2479.
[23] ZHANG Z, ZHAO Z, FU Y. Dynamics analysis and simulation of six DOF parafoil system[J]. Cluster Computing, 2019, 22(5):12669-12680.
[24] LV F K, HE W L, ZHAO L G. An improved nonlinear multibody dynamic model for a parafoil-UAV system[J]. IEEE Access, 2019, 7:139994-140009.
[25] YANG H, SONG L, CHEN W F. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5):1670-1680.
[26] 唐小军, 尉建利, 陈凯. 求解最优控制问题的Chebyshev-Gauss伪谱法[J]. 自动化学报, 2015, 41(10):1778-1787. TANG X J, WEI J L, CHEN K. A Chebyshev-Gauss pseudo spectral method for solving optimal control problems[J]. Acta Automatica Sinica, 2015, 41(10):1778-1787(in Chinese).
[27] CHU X, ZHANG J, LU S, et al. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method[J]. Acta Astronautica, 2016, 128:363-376.
[28] YANG S, TAO C, HAO X, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67:88-95.
[29] 刘平, 胡云卿, 廖俊, 等. 基于两阶段自适应Gauss配点重构伪谱法的电力机车优化操纵[J]. 自动化学报, 2019, 45(12):2344-2354. LIU P, HU Y Q, LIAO J, et al. Optimization operation of electric locomotive based on two-stage adaptive Gauss re-collocation pseudospectral approach[J]. Acta Automatica Sinica, 2019, 45(12):2344-2354(in Chinese).
[30] 蔺君,何英姿,黄盘兴.基于改进分段Gauss伪谱法的带推力高超声速飞行器再入轨迹规划[J].控制理论与应用,2019,36(10):1662-1671. LIN J, HE Y Z, HUANG P X. Powered hypersonic vehicle reentry trajectory optimization based on improved multi-phase Gauss spectral method[J]. Control Theory and Applications, 2019, 36(10):1662-1671(in Chinese).
Outlines

/