Article

Temperature design and control of rotor drag-hinge self-lubrication bush fatigue test

  • MA Zhanqi ,
  • SUN Xiuwen ,
  • WANG Lingqi
Expand
  • 1. Harbin Aircraft Industry Group Co., Ltd., Harbin 150066, China;
    2. Shanghai Bearing Technology Research Institute, Shanghai 200031, China

Received date: 2020-05-13

  Revised date: 2020-06-09

  Online published: 2020-07-06

Abstract

The self-lubricating bushing of polymer material, whose friction damping provides lead-lag reduction damping for the rotor drag-hinge, rises in temperature during helicopter flights because of the considerable heat generated by the periodic lead-lag motion of the drag-hinge, which could easily induce drastic changes in its damping value. By establishing the friction heat generation model of the drag-hinge self-lubricating bushing of the rotor arm, we calculate the total friction heat flux in the drag-hinge, and compute the heat flux distribution based on the assumption that the highest temperature of the contact surfaces of the friction pairs is equal. The finite element steady-state heat is applied to the solution of the heat transfer process, and the temperature distribution of the drag-hinge friction pair when the helicopter rotor is running is obtained. Then the water cooling heat dissipation equivalence analysis of the self-lubricating bushing fatigue durability test device is conducted, and the temperature control parameter of the test device is determined, thereby providing parameters for the design and verification of the fatigue durability test of the rotor drag-hinge self-lubricating bushing.

Cite this article

MA Zhanqi , SUN Xiuwen , WANG Lingqi . Temperature design and control of rotor drag-hinge self-lubrication bush fatigue test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(5) : 524217 -524217 . DOI: 10.7527/S1000-6893.2020.24217

References

[1] 米海也夫P A. 直升机强度[M].郭泽弘, 杨俊严, 译. 北京:航空工业出版社, 1991:119-125. MИXEEB P A. Helicopter strength[M]. GUO Z H, YANG J Y, translated. Beijing:Aviation Industry Press, 1991:119-125(in Chinese).
[2] VORONKOV A Z, TRIPHONOVA N A. Characteristics of metal-polymeric bearings of blade drag hinges, realized on coaxial helicopters[R]. 1994.
[3] VORONKOV A Z, TRIPHONOVA N A. Coaxial helicopter safety from ground resonance point of view[R]. 1995.
[4] 刘亚利, 胡国才, 刘湘一, 等. 共轴式直升机地面共振的旋翼参数影响分析[J].海军航空工程学院学报, 2015, 30(4):358-363. LIU Y L, HU G C, LIU X Y, et al. Analysis of rotor parameters on coaxial articulated helicopter ground resonance[J]. Journal of Naval Aeronautical and Astronautical University, 2015, 30(4):358-363(in Chinese).
[5] 顾仲权.抑制直升机"地面共振"的优化设计[J].航空学报,1989, 10(3):113-118. GU Z Q. Optimization design for suppressing "Ground Resonance" of helicopters[J]. Acta Aeronautica et Astronautica Sinica,1989, 10(3):113-118(in Chinese).
[6] 贺俊卿.导热型自润滑聚甲醛复合材料的制备与性能[D]. 上海:华东理工大学, 2011:28-35. HE J Q. Preparation and properties of thermally conductive self-lubricating polyoxymethylene composites[D]. Shanghai:East China University of Science and Technology, 2011:28-35(in Chinese).
[7] 李英, 李宝福, 李如炎. 自润滑关节轴承稳态热分析[J].计量与测试技术, 2016, 43(8):65-68. LI Y, LI B F, LI R Y. Steady-state thermal analysis of self-lubricating joint bearing[J]. Metrology & Measurement Technique, 2016, 43(8):65-68(in Chinese).
[8] 闫刚, 魏伯荣, 杨海涛. 聚合物基复合材料导热模型及其研究进展[J]. 玻璃钢/复合材料, 2006(3):50-52. YAN G, WEI B R, YANG H T. Study Progress in fiber permeability in resin transfer molding[J]. Fiber Reinforced/Plastics Composites, 2006(3):50-52(in Chinese).
[9] KHARE J K, SHARMA A K, TIWARI A, et al. Wear and friction analysis of sintered metal powder self lubricating bush bearing[J]. International Journal of Mechanical and Mechatronics Engineering, 2014, 8(8):1491-1494.
[10] MIVEHCHI H, VARVANI-FARAHANI A. The effect of temperature on fatigue strength and cumulative fatigue damage of FRP composites[J]. Procedia Engineering, 2010, 2(1):2011-2020.
[11] LARAQI N, ALILAT N, GARCIA DE MARIA J M,et al. Temperature and division of heat in a pin-on-discfrictional device-Exact analytical solution[J]. Wear, 2009, 266(7-8):765-770.
[12] 韩东太.金属氧化物/尼龙1010复合材料热力学性能与摩擦热行为研究[M]. 徐州:中国矿业大学出版社, 2013:107-121. HAN D T. Study on thermodynamic properties and frictional thermal behavior of metal oxide/Nylon 1010 composites[M]. Xuzhou:China University of Mining and Technology Press, 2013:107-121(in Chinese).
[13] LI K W, SHEN X J, CHEN Y G, et al. Numerical analysis of woven fabric composites lubricated spherical plain bearings[C]//11th International Congress and Exhibition on Experimental and Applied Mechanics, 2008.
[14] JAEGER J C. Moving sources of heat and the temperature at sliding contacts[J]. Proceedings of the Royal Society of New South Wales, 1942, 76:203-224.
[15] BHUSHAN B. Modern tribology handbook V2[M]. Boca Raton:CRC Press, 2001:235-254.
[16] BLOK H. Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions[C]//Proceeding of the General Discussion on Lubrication and Lubricants. London:Institution of Mechanical Engineers, 1937:222-235.
[17] 凌桂龙. ANSYS 14.0热力学分析从入门到精通[M].北京:清华大学出版社, 2013:461-462. LING G L. ANSYS 14.0 thermodynamic analysis:From entry to mastery[M]. Beijing:Tsinghua University Press, 2013:461-462(in Chinese).
[18] 郭健,王健志,隋福成, 等.有限元技术在飞机结构热传导分析中的应用[J].飞机设计,2012,32(3):12-14. GUO J, WANG J Z, SUI F C, et al. The application FEM in aircraft structure heat transfer[J]. Aircraft Design, 2012, 32(3):12-14(in Chinese).
[19] KENNEDY F E. Surface temperature in sliding systems:A finite element analysis[J]. Journal of Lubrication Technology, 1981, 103(1):90-96.
[20] 杨世铭, 陶文铨.传热学[M].北京:高等教育出版社, 2006:554-577. YANG S M, TAO W Q. Heat transfer[M]. Beijing:High Education Press, 2006:554-577(in Chinese).
[21] 刘敏丽. 流体流动与传热[M].北京:冶金工业出版社, 2011:149-152. LIU M L. Fluid flow and heat transfer[M]. Beijing:Metallurgical Industry Press, 2011:149-152(in Chinese).
Outlines

/