Fluid Mechanics and Flight Mechanics

Effects of air-gap on temperature rise of high frequency AC-SDBD anti-icing and deicing actuator

  • WEI Dechen ,
  • ZHANG Guoxin ,
  • CHEN Yongbin ,
  • LIU Senyun
Expand
  • 1. Institute of Aeronautical Engineering and Technology, Binzhou University, Binzhou 256600, China;
    2. Chinese Aeronautical Establishment, Beijing 100012, China;
    3. Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2020-05-07

  Revised date: 2020-05-30

  Online published: 2020-07-06

Supported by

Natural Science Foundation of Shandong Province (ZR2019PF021); Initial Scientific Research Fund of Doctor in Binzhou University(2018Y14); Open Fund of Key Laboratory of Icing and Anti/De-icing (IADL20200408)

Abstract

Dielectric barrier discharge produces ionization effect, aerodynamic effect, and thermal effect, and therefore can be used for aircraft anti-icing and deicing. The air-gap on the rear electrode influences both the discharge times per cycle and the charge distribution for Surface Dielectric Barrier Discharge (SDBD) actuators with Alternating Current power supply (AC-SDBD), and frequency is also an important factor affecting temperature rise of the actuator. However, current research on the temperature rise effect of AC-SDBD is based on the configuration without air-gaps on the rear electrode, and lacks high excitation frequencies above 15 kHz.The contrast configurations with and without air-gaps on the rear electrode are built. In the high frequency range of 35-55 kHz, the temperature rise characteristics of AC-SDBD are studied using the electrical characteristics, infrared temperature measurement, and discharge morphology. The results show that the maximum temperature on the exposed surface of the AC-SDBD actuator with air-gap on the rear electrode is 151.51% as much as that without air-gap when the same voltage or frequency is applied. The existence of the air-gap on the rear electrode can enlarge the temperature rise area on the exposed surface of the actuator, particularly in the direction opposite to the discharge. The temperature increases nonlinearly with the rise of frequency, thereby reducing the risk of high voltage breakdown.

Cite this article

WEI Dechen , ZHANG Guoxin , CHEN Yongbin , LIU Senyun . Effects of air-gap on temperature rise of high frequency AC-SDBD anti-icing and deicing actuator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(6) : 124195 -124195 . DOI: 10.7527/S1000-6893.2020.24195

References

[1] PAUW D D, DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an aifoil[J]. Journal of Aircraft, 2017, 54(2):490-499.
[2] 郑无计, 李颖晖, 周驰, 等. 基于动力学边界的结冰飞机安全预警方法[J]. 航空学报, 2019, 40(4):122478. ZHENG W J, LI Y H, ZHOU C, et al. Flight safety warning method for icing aircraft based on dynamic envelope[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122478(in Chinese).
[3] WALDMAN R M, HU H. High-speed imaging to quantify transient ice accretion process over an airfoil[J]. Journal of Aircraft, 2016, 53(2):369-377.
[4] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰冰形测量方法[J]. 航空学报, 2017, 38(1):120167. LI W B, YI X, DU Y X, et al. A measurement approach for ice shape based on variational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120167(in Chinese).
[5] 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2021, 42(3):124085. BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):124085(in Chinese).
[6] XU H F, HE Y, STROBEL K L, et al. Flight of an aeroplane with solid-state propulsion[J]. Nature, 2018, 563:532-535.
[7] PLOURABOUÉ F. Flying with ionic wind[J]. Nature, 2018, 563:476-477.
[8] KELLEY C L, BOWLES P O, COONEY J, et al. Leading-edge separation control using alternating current and nanosecond pulse plasma actuators[J]. AIAA Journal, 2014, 52(9):1871-1884.
[9] SHEN L, WEN C. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators[J]. Applied Physics Letters, 2017, 110:251904.
[10] ONO R, OGURA K, MOGI T. Stabilization of premixed lean methane-air combustion using dielectric barrier discharge with low pollutant emissions[J]. Journal of Physics D:Applied Physics, 2017, 50(36):365201.
[11] 赵彬彬, 董威, 张屹. 等离子体射流防冰性能实验研究Ⅱ. 流向和展向布置DBD-PA防冰性能比较[J]. 上海交通大学学报, 2018, 52(11):1532-1536. ZHAO B B, DONG W, ZHANG Y. Experimental study on the anti-icing performance of plasma jet II. Comparison of anti-icing performance using streamwise and spanwise DBD-PA[J]. Journal of Shanghai Jiaotong University, 2018, 52(11):1532-1536(in Chinese).
[12] 田永强, 蔡晋生, 杨磊磊, 等. 脉冲介质阻挡放电等离子体热效应实验[J]. 航空动力学报, 2019, 34(12):2663-2676. TIAN Y Q, CAI J S, YANG L L, et al. Experimental on the thermal effects of pulsed dielectric barrier discharge plasma[J]. Journal of Aerospace Power, 2019, 34(12):2663-2676(in Chinese).
[13] 贾韫泽, 桑为民, 蔡旸. 基于数值模拟的NSDBD等离子体激励器防冰特性[J]. 航空学报, 2018, 39(4):121652. JIA Y Z, SANG W M, CAI Y. Anti-icing property of NSDBD plasma actuator based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121652(in Chinese).
[14] 田苗, 宋慧敏, 梁华, 等. 介质阻挡放电等离子体防除冰实验研究[J]. 化工学报, 2019, 70(11):4247-4256. TIAN M, SONG H M, LIANG H, et al. Experimental study on DBD discharge plasma for anti-icing and de-icing[J]. Journal of Chemical Industry and Engineering, 2019, 70(11):4247-4256(in Chinese).
[15] 徐金洲, 梁荣庆, 任兆杏, 等. 电源对介质阻挡放电(DBD)激发准分子(XeCl)辐射的影响[J]. 真空科学与技术学报, 2002, 22(5):338-342. XU J Z, LIANG R Q, REN Z X, et al. Influence of power supply on excimer XeCl emission excited by dielectric barrier discharge[J]. Chinese Journal of Vacuum Science and Technology, 2002, 22(5):338-342(in Chinese).
[16] CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8):102.
[17] ZHOU W W, LIU Y, HU H, et al. Utilization of thermal effect induced by plasma generation for aircraft icing mitigation[J]. AIAA Journal, 2018, 56(3):1097-1104.
[18] MENG X S, CAI J S, TIAN Y Q, et al. Experimental study of deicing and anti-icing on a cylinder by DBD plasma actuation[C]//47th AIAA Plasma Dynamics and Lasers Conference. Reston:AIAA, 2016:1-14.
[19] 赵彬彬, 董威, 刘娟, 等. 等离子体射流防冰性能实验研究I. DBD-PA参数化分析及防冰效果验证[J]. 上海交通大学学报, 2018, 52(8):924-929. ZHAO B B, DONG W, LIU J, et al. Experimental study on the anti-icing performance of plasma jet I. Parametric analysis of DBD-PA and verification on the anti-icing performance[J]. Journal of Shanghai Jiaotong University, 2018, 52(8):924-929(in Chinese).
[20] MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31:037103.
[21] TIAN Y Q, ZHANG Z K, CAI J S, et al. Experimental study of an anti-icing method over an airfoil based on pulsed dielectric barrier discharge plasma[J]. Chinese Journal of Aeronautics, 2018, 31(7):1449-1460.
[22] 李春茂, 董磊, 彭开晟, 等. 电极间隙对介质阻挡放电特性的影响[J]. 西南交通大学学报, 2019, 54(4):679-685. LI C M, DONG L, PENG K S, et al. Influence of electrode gap on characteristics of dielectric barrier discharge[J]. Journal of Southwest Jiaotong University, 2019, 54(4):679-685(in Chinese).
[23] MATSUMOTO T, KOIZUMI T, KAWAKAMI Y, et al. Perfect blackbody radiation from a graphene nanostructure with appli-cation to high-temperature spectral emissivity measurements[J]. Optics Express, 2013, 21(25):30964.
[24] PONS J, MOREAU E, TOUCHARD G. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure:electrical properties and induced airflow properties and induced airflow characteristics[J]. Journal of Physics D:Applied Physics, 2005, 38(19):3635-3642.
[25] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[26] 陆纪椿, 史志伟, 杜海, 等. 等离子体激励器控制平板边界层转捩实验研究[J]. 航空学报, 2016, 37(4):1166-1173. LU J C, SHI Z W, DU H, et al. Experimental study of controlling flat transition using surface dielectric barrier discharge actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1166-1173(in Chinese).
[27] ROTH R J, RAHEL J, DAI X, et al. The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDPTM) reactors for surface treatment applications[J]. Journal of Physics D:Applied Physics, 2005, 38(4):555-567.
[28] 杨德正, 王文春. 电极极性和脉冲峰值对等离子体发射光谱德影响[M]//邵涛, 严萍. 大气压气体放电及其等离子体应用. 北京:科学出版社, 2015:140-141. YANG D Z, WANG W C. Influence of electrode polarity and pulse peak value on plasma emission spectrum[M]//SHAO T, YAN P. Gas discharges at atmospheric pressure and the applications of plasma. Beijing:Science Press, 2015:140-141(in Chinese).
[29] YANG D Z, WANG W C, LI S Z, et al. A diffuse air plasma in bi-directional nanosecond pulsed dielectric barrier discharge[J]. Journal of Physics D:Applied Physics, 2020, 43:455202.
[30] 胡剑虹, 宁飞, 沈湘衡, 等. 目标表面发射率对红外热像仪测温精度的影响[J]. 中国光学, 2010, 3(2):152-156. HU J H, NING F, SHEN X H, et al. Influence of surface emissivity of objects on measuring accuracy of infrared thermal imagers[J]. Chinese Optics, 2010, 3(2):152-156(in Chinese).
[31] 郝玲艳, 李清泉, 司雯, 等. 氩气气流增强沿面介质阻挡放电等离子体特性的实验研究[J]. 中国电机工程学报, 2016, 36(8):2296-2304. HAO L Y, LI Q Q, SI W, et al. Experimental study on improvement of plasma characteristics of surface dielectric barrier discharge caused by argon flow[J]. Proceedings of the CSEE, 2016, 36(8):2296-2304(in Chinese).
[32] ONG L, GAO G, PENG K, et al. Effects of surface dielectric barrier discharge on aerodynamic characteristic of train[J]. AIP Advances, 2017, 7(7):075112.
[33] FORTE M, JOLIBOIS J, PONS J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity:application to airflow control[J]. Experiments in Fluids, 2007, 43(6):917-928.
[34] MERBAHI N, SEWRAJ N, MARCHAL F, et al. Luminescence of argon in a spatially stabilized mono-filamentary dielectric barrier micro-discharge:Spectroscopic and kinetic analysis[J]. Journal of Physics D:Applied Physics, 2004, 37(12):1664-1678.
[35] TAO S, KAIHUA L, CHENG Z, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D:Applied Physics, 2008, 41(21):215203.
Outlines

/