For electronic countermeasures and dense clutter environments, a sensor management algorithm based on decision uncertainty using the measurement-driven multi-target filter is proposed. First, according to the theory of partially observable Markov decision process, a general sensor management approach based on Rényi divergence is presented. Meanwhile, taking into account the information integrity, information quality and information connotation in the decision-making process, we evaluate the multi-target decision uncertainty level based on the target motion situation in the measurement-driven adaptive filtering framework, subsequently selecting the maximum decision uncertainty target. Finally, the sensor allocation scheme is solved with the maximum information gain of the maximum decision uncertainty target as the criterion. The simulation results show that the proposed algorithm can effectively suppress the influence of electronic countermeasures and dense clutter on multi-target tracking and sensor management. Compared with the threat-based sensor management algorithm, the average Optimal Sub-Pattern Assignment (OSPA) distance and the average calculation time are significantly reduced. In cases of dense clutter and electronic countermeasures, the proposed algorithm has high reliability.
[1] 张昀普, 单甘霖. 面向空中目标威胁评估的多传感器管理方法[J].航空学报, 2019, 40(11):323218. ZHANG Y P, SHAN G L. Multi-sensor management approach for aerial target threat assessment[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323218(in Chinese)
[2] 高晓光, 李飞, 万开方. 数据丢包环境下的多传感器协同跟踪策略研究[J].系统工程与电子技术, 2018, 40(11):2450-2458. GAO X G, LI F, WAN K F. Research on multi-sensor cooperative tracking strategy in data packet loss environment[J].Systems Engineering and Electronics, 2018, 40(11):2450-2458(in Chinese).
[3] 陈辉, 贺忠良, 连峰, 等. 多目标跟踪中基于目标威胁度评估的传感器控制方法研究[J].电子与信息学报, 2018, 40(12):2861-2867. CHEN H, HE Z L, LIAN F, et al. Threat assessment based sensor control for multi-target tracking[J].Journal of Electronics and Information Technology, 2018, 40(12):2861-2867(in Chinese)
[4] PANG C, SHAN G L, DUAN X S, et al. A multi-mode sensor management approach in the missions of target detecting and tracking[J].Electronics, 2019, 8(1):1-18.
[5] 闫涛, 韩崇昭, 张光华. 空中目标传感器管理方法综述[J].航空学报, 2018, 39(10):022209. YAN T, HAN C Z, ZHANG G H. An overview of sensor management approaches for aerial target[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(10):022209(in Chinese).
[6] MARTIN S. Risk-based sensor resource management for field of view constrained sensors[C]//Proceedings of IEEE International Conference on Information Fusion. Piscataway:IEEE Press, 2015:2041-2048.
[7] MARCOS E G, DOMINIQUE M, PHILIIPPE V, et al. A risk-based sensor management using random finite sets and POMDP[C]//Proceedings of IEEE International Conference on Information Fusion. Piscataway:IEEE Press, 2017:1588-1596.
[8] KATSILIERIS F, DRIESSEN H, YAROVOY A. Threat-based sensor management for target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):2772-2785.
[9] HOU J, JING Z R, YANG Y. Target tracking in standoff jammer using unscented kalman filter and particle filter with negative information[J].Journal of Shanghai Jiaotong University (Science), 2014, 19(2):181-189.
[10] ZHENG Y M, SHI Z G, LU R X, et al. An efficient data-driven particle PHD filter for multitarget tracking[J].IEEE Transactions on Industrial Informatics, 2013, 9(4):2318-2326.
[11] GOSTAR A K, HOSEINNEZHAD R, BAB H A. Multi-bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles[J].Signal Processing, 2016, 119:28-42.
[12] TIAN M C, BO Y M, CHEN Z M, et al. A new improved firefly clustering algorithm for SMC-PHD filter[J].Applied Soft Computing Journal, 2019, 85:105840.
[13] MAHLER R P S. Advances in statistical multisource multitarget information fusion[M]. Norwood:Artech House, 2014:825-860.
[14] WANG X Y, HOSEINNEZHAD R, GOSTAR A K, et al. Multi-sensor control for multi-object bayes filters[J].Signal Processing, 2018, 142:260-270.
[15] HOANG H G, VO B T. Sensor management for multi-target tracking via multi-bernoulli filtering[J].Automatica, 2014, 50(4):1135-1142.
[16] SI W J, WANG L W, QU Z Y. A Measurement-driven adaptive probability hypothesis density filter for multitarget tracking[J].Chinese Journal of Aeronautics, 2015, 28(6):1689-1698.
[17] 董鹏, 敬忠良, 雷明, 等. 基于关联的自适应新生目标强度CPHD滤波[J].系统工程与电子技术, 2016, 38(4):725-731. DONG P, JING Z L, LEI M, et al. Association based adaptive target birth intensity CPHD filter[J].Systems Engineering and Electronics, 2016, 38(4):725-731(in Chinese)
[18] BARTON D K. Radar system analysis and modeling[M]. Norwood:Artech House, 2005:387-388.
[19] 张睿文, 宋笔锋, 裴扬, 等. 基于ABMS的飞机拦截作战效能评估方法[J].系统工程与电子技术, 2018, 40(2):322-329. ZHANG R W, SONG B F, PEI Y, et al. Evaluation method for operational effectiveness of aircraft interception based on ABMS[J].Systems Engineering and Electronics, 2018, 40(2):322-329(in Chinese)
[20] RISTIC B, VO B N, CLARK D. A note on the reward function for PHD filters with sensor control[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1521-1529.
[21] CLARK D E, BELL J. Multi-target state estimation and track continuity for the particle PHD filter[J].IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1441-1453.
[22] LIU W F, HAN C Z, LIAN F, et al. Multitarget state extraction for the PHD filter using MCMC approach[J].IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2):864-883.
[23] TOBIAS M, LANTERMAN A D. Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar[J].IET Radar, Sonar and Navigation, 2008, 2(5):351-365.
[24] LI T C, JUAN C M, SUN S D, et al. Multi-EAP:Extended EAP for multi-estimate extraction for SMC-PHD filter[J].Chinese Journal of Aeronautics, 2017, 30(1):368-379.
[25] CAI S, RAN X, WANG C. A targets prioritizing method based on clustering coefficient TSM[C]//International Conference on Advances in Materials, Machinery, Electrical Engineering, 2017:864-869.
[26] YANG X J, XING K Y, FENG X L. Maneuvering target tracking in dense clutter based on particle filtering[J].Chinese Journal of Aeronautics 2011, 24(2):171-180.