Electronics and Electrical Engineering and Control

Design and implementation of a 2-DOF aerial manipulation system

  • HE Wei ,
  • FANG Yongchun ,
  • LIANG Xiao ,
  • ZHANG Peng
Expand
  • 1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China;
    2. Tianjin Key Laboratory of Intelligent Robotics, Tianjin 300350, China

Received date: 2020-05-24

  Revised date: 2020-06-01

  Online published: 2020-06-24

Supported by

National Natural Science Foundation of China (61873132, 61903200); Natural Science Foundation of Tianjin (19JCQNJC03500)

Abstract

A dynamic model of the aerial manipulation system based on the Euler-Lagrange method is firstly presented. Under the assumption that the joint angles of the robotic arm change slowly, the model is simplified while still reasonable and adequate to represent the real situation. A hierarchical inner-outer loop based decoupled controller is designed after feedback linearization. Then a sliding mode controller and a Proportion-Integral-Differential (PID) controller are designed for the inner and outer loops respectively. Simulation experiments show that the proposed method performs significantly better than the classical hierarchical proportion-integral-differential controller in the tasks of regulation and trajectory tracking with the presence of disturbances caused by the robotic arm. It can be concluded that the modeling and control method can effectively reject the modeled and unmodeled disturbances from the arm, and that the computing complexity of the controller is low enough for practical applications.

Cite this article

HE Wei , FANG Yongchun , LIANG Xiao , ZHANG Peng . Design and implementation of a 2-DOF aerial manipulation system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(2) : 324280 -324280 . DOI: 10.7527/S1000-6893.2020.24280

References

[1] 曹蔚然, 朱琳琳, 韩建达. 面向旋翼无人机的高压输电线在线检测方法[J]. 计算机应用研究, 2014, 31(10):3196-3200. CAO W R, ZHU L L, HAN J D. Fast line detection method applied in UAV high voltage line inspection[J]. Application Research of Computers, 2014, 31(10):3196-3200(in Chinese).
[2] 孟祥冬, 何玉庆, 张宏达, 等. 飞行机械臂系统的接触力控制[J]. 控制理论与应用, 2020, 37(1):59-68. MENG X D, HE Y Q, ZHANG H D, et al. Contact force control of aerial manipulator systems[J]. Control Theory & Applications, 2020, 37(1):59-68(in Chinese).
[3] 杨斌, 何玉庆, 韩建达, 等. 作业型飞行机器人研究现状与展望[J]. 机器人, 2015, 37(5):628-640. YANG B, HE Y Q, HAN J D, et al. Survey on aerial manipulator systems[J]. Robot, 2015, 37(5):628-640(in Chinese).
[4] 宋大雷, 孟祥冬, 齐俊桐, 等. 3自由度旋翼飞行机械臂系统动力学建模与预测控制方法[J]. 机器人, 2015, 37(2):152-160. SONG D L, MENG X D, QI J T, et al. Strategy of dynamic modeling and predictive control on 3-DoF rotorcraft aerial manipulator system[J]. Robot, 2015, 37(2):152-160(in Chinese).
[5] ORSAG M, KORPELA C, OH P, et al. Aerial manipulation[M]. Berlin:Springer, 2018:10-12.
[6] 肖玉婷, 方勇纯, 梁潇, 等. 基于分块优化思想的多无人机覆盖路径规划[J].中国科学:技术科学, 2020, 50(4):439-452. XIAO Y T, FANG Y C, LIANG X, et al. Planning of the coverage route for multi-UAVs based on section optimization[J]. Scientia Sinica Technologica, 2020, 50(4):439-452(in Chinese).
[7] LIANG X, FANG Y C, SUN N, et al. Adaptive nonlinear hierarchical control for a rotorcraft transporting a cable-suspended payload[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,(2019-08-19)[2020-05-20]. https://ieeexplore.ieee.org/document/8805167.
[8] 孙敬陶, 钟杭, 王耀南, 等. 旋翼飞行机械臂的混合视觉伺服和分层控制方法[J]. 仪器仪表学报, 2018, 39(7):56-65. SUN J T, ZHONG H, WANG Y N, et al. Hybrid visual servoing with hierarchical task control for unmanned aerial manipulation[J]. Chinese Journal of Scientific Instrument, 2018, 39(7):56-65(in Chinses).
[9] RUGGIERO F, LIPPIELLO V, OLLERO A. Aerial manipulation:A literature review[J]. IEEE Robotics and Automation Letters, 2018, 3(3):1957-1964.
[10] RUGGIERO F, TRUJILLO M A, CANO R. A multilayer control for multirotor UAVs equipped with a servo robot arm[C]//International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015:4014-4020.
[11] KIM S, CHOI S, KIM H J. Aerial manipulation using a quadrotor with a two DOF robotic arm[C]//International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013:4990-4995.
[12] LIPPIELLO V, RUGGIERO F. Cartesian impedance control of a UAV with a robotic arm[J]. IFAC Proceedings Volumes, 2012, 45(22):704-709.
[13] ZHANG G Y, HE Y Q, DAI B, et al. Grasp a moving target from the air:System & control of an aerial manipulator[C]//International Conference on Robotics and Automation. Piscataway:IEEE Press, 2018:1681-1687.
[14] YANG B, HE Y Q, HAN J D, et al. Rotor-flying manipulator:modeling, analysis, and control[J]. Mathematical Problems in Engineering, 2014, 2014:492965.
[15] CACCAVALE F, GIGLIO G, MUSCIO G, et al. Adaptive control for UAVs equipped with a robotic arm[J]. IFAC Proceedings Volumes, 2014, 47(3):11049-11054.
[16] KIM S, CHOI S, KIM H, et al. Robust control of an equipment-added multirotor using disturbance observer[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4):1524-1531.
[17] CROOKS W, VUKASIN G, O'SULLIVAN M, et al. Fin ray® effect inspired soft robotic gripper:From the robosoft grand challenge toward optimization[J]. Frontiers in Robotics and AI, 2016, 3:70.
[18] CRAIG J J. Introduction to robotics:Mechanics and control[M]. Upper Saddle River:Pearson Education, 2009:64-69, 143-144.
[19] MURRAY R M, LI Z X, SASTRY S S. A mathematical introduction to robotic manipulation[M]. Boca Raton:CRC Press, 1994:176.
[20] ARLEO G, CACCAVALE F, MUSCIO G, et al. Control of quadrotor aerial vehicles equipped with a robotic arm[C]//21 st Mediterranean Conference on Control and Automation. Piscataway:IEEE Press, 2013:1174-1180.
[21] KHALIL H K. Nonlinear systems[M]. Upper Saddle River:Prentice Hall, 2002:552-579.
[22] LEE T, LEOK M, MCCLAMROCH N H. Geometric tracking control of a quadrotor UAV on SE(3)[C]//49th IEEE Conference on Decision and Control. Piscataway:IEEE Press, 2010:5420-5425.
[23] ROHMER E, SINGH S P N, FREESE M. V-REP:A versatile and scalable robot simulation framework[C]//International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013:1321-1326.
Outlines

/