Solid Mechanics and Vehicle Conceptual Design

Analysis on I-II mixed interlaminar crack propagation of composite MMB specimens

  • DENG Jian ,
  • LU Tianjian ,
  • YIN Qiaozhi
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. MⅡT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-05-19

  Revised date: 2020-06-12

  Online published: 2020-06-24

Supported by

National Natural Science Foundation of China (51905264, 11972185); China Postdoctoral Science Foundation (2019M661818, 2019M650115); Priority Academic Program Development of Jiangsu Higher Education Institutions; the Fundamental Research Funds for the Central Universities (NP2017401)

Abstract

A theoretical model of general delamination cracked laminates is established based on the classical laminate theory and the bilinear cohesive zone model. The crack propagation in Mixed-Mode Bending (MMB) specimen is studied considering both I and Ⅱ mode cracks. A crack superposition model of I and Ⅱ mode cracks is proposed, followed by the introduction of the rigid body rotational displacement of the mode I crack component. The closing effect of the central load component on the mode I crack propagation is also considered in the MMB tests. According to the mechanical responses in the cohesive zone, a piecewise general solution to the displacement functions is obtained considering that the crack could be larger than half of the specimen length. Combining the boundary and continuity conditions of the superposition model, we analyzes the crack propagation process in the MMB test, obtaining the load-displacement curves. Comparison with both predictions of the beam model and the existing test results verifies the effectiveness and accuracy of the proposed model for I-Ⅱ mixed mode crack propagation. The model is further applied to the discussion of the effect of mode mixity ratios and the closing effect. The results show that the closing effect is more intensive when the initial mixity of the mode Ⅱ crack is relatively larger, which can lead to the closure of the mode I crack. During crack propagation, the mode mixity ratio remains essentially constant when the crack length is smaller than half of the specimen length. Conversely, as the crack length exceeds half of the specimen length, the crack mode gradually degenerates to a single mode fracture with a relatively large initial mode mixity ratio due to the closing effect.

Cite this article

DENG Jian , LU Tianjian , YIN Qiaozhi . Analysis on I-II mixed interlaminar crack propagation of composite MMB specimens[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(2) : 224241 -224241 . DOI: 10.7527/S1000-6893.2020.24241

References

[1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[2] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese).
[3] 管国阳, 矫桂琼, 潘文革. 湿热环境下复合材料的混合型层间断裂特性研究[J]. 复合材料学报, 2004, 21(2):81-86. GUAN G Y, JIAO G Q, PAN W G. Experimental study on the interlaminar fracture toughness of composite laminate on hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2004, 21(2):81-86(in Chinese).
[4] 姚辽军, 赵美英, 万小朋. 基于CDM-CZM的复合材料补片补强参数分析[J]. 航空学报, 2012, 33(4):666-671. YAO L J, ZHAO M Y, WAN X P. Parameter analysis of composite laminates with pathced reinforcement based on CDM-CZM[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):666-671(in Chinese).
[5] HARPER P W, HALLETT S R. Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75(16):4774-4792.
[6] 卢子兴. 复合材料界面的内聚力模型及其应用[J]. 固体力学学报, 2015, 36(S1):85-94. LU Z X. A simple review for cohesive zone models of composite interface and their applications[J]. Chinese Journal of Solid Mechanics, 2015, 36(S1):85-94(in Chinese).
[7] KANNINEN M. An augmented double cantilever beam model for studying crack propagation and arrest[J]. International Journal of Fracture, 1973, 9(1):83-92.
[8] WILLIAMS J, HADAVINIA H. Analytical solutions for cohesive zone models[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(4):809-825.
[9] CARLSSON L, GILLESPIE J, PIPES R. On the analysis and design of the end notched flexure (ENF) specimen for mode Ⅱ testing[J]. Journal of Composite Materials, 1986, 20(6):594-604.
[10] WILLIAMS J. End corrections for orthotropic DCB specimens[J]. Composites Science and Technology, 1989, 35(4):367-376.
[11] WANG J, QIAO P. Novel beam analysis of end notched flexure specimen for mode-Ⅱ fracture[J]. Engineering Fracture Mechanics, 2004, 71(2):219-231.
[12] 陈瑛, 乔丕忠. 4ENF黏聚解析模型分析[J]. 河海大学学报(自然科学版), 2008, 36(2):234-237. CHEN Y, QIAO P Z. Cohesive analytic model of 4ENF specimen[J]. Journal of Hohai University:Natural Sciences, 2008, 36(2):234-237(in Chinese).
[13] 刘伟先, 周光明, 王新峰,等. 复合材料DCB试件裂纹扩展理论分析[J]. 复合材料学报, 2014, 31(1):207-212. LIU W X, ZHOU G M, WANG X F, et al. Theoratical analysis of crack propagation in composite DCB specimen[J]. Acta Materiae Compositae Sinica, 2014, 31(1):207-212(in Chinese).
[14] 刘伟先, 周光明, 王新峰. 复合材料ENF试件裂纹扩展理论分析[J]. 航空学报, 2014, 35(1):187-194. LIU W X, ZHOU G M, WANG X F. Theoratical analysis of crack propagation in composite ENF specimen[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):187-194(in Chinese).
[15] REEDER J R, CREWS J H. Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28(7):1270-1276.
[16] ASTM. Standard test method for mixed mode I-mode Ⅱ interlaminar fracture of unidirectional fiber-reinforced polymer matrix composites:D 6671-01[S]. West Conshohocken:American Society for Testing and Materials, 2003:400-411.
[17] DE MORAIS A, PEREIRA A. Mixed mode I+Ⅱ interlaminar fracture of glass/epoxy multidirectional laminates-Part 1:Analysis[J]. Composites Science and Technology, 2006, 66(13):1889-1895.
[18] BLANCO N, TURON A, COSTA J. An exact solution for the determination of the mode mixture in the mixed-mode bending delamination test[J]. Composites Science and Technology, 2006, 66(10):1256-1258.
[19] MI Y, CRISFIELD M, DAVIES G, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14):1246-1272.
[20] BENNATI S, FISICARO P, VALVO P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test-Part I:Literature review and mechanical model[J]. Meccanica, 2013, 48(2):443-462.
[21] REDDY J N. Mechanics of laminated composite plates and shells:Theory and analysis[M]. Boca Raton:CRC Press, 2004.
[22] REDDY J. Analysis of functionally graded plates[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3):663-684.
[23] TENCHEV R, FALZON B. A correction to the analytical solution of the mixed-mode bending (MMB) problem[J]. Composites Science and Technology, 2007, 67(3-4):662-668.
[24] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37:1415-1438.
[25] NGUYEN N, WAAS A M. A novel mixed-mode cohesive formulation for crack growth analysis[J]. Composite Structures, 2016, 156:253-262.
Outlines

/