To promote the efficiency and safety of autonomous detection tasks of lunar rovers, a fast and safe path planning algorithm for large-scale autonomous detection based on the lunar surface digital elevation map is proposed. A terrain trafficability analysis method is firstly designed according to the lunar digital elevation map, and a Euclidean Distance Map (EDM) is generated to provide reference for safe path planning. Then, aiming at the problems of slow searching speed and lack of consideration of path security when algorithm A* solves the problem of lunar surface patrol detection, we propose algorithm FSA*, improve the search mechanism of algorithm A* for the fast search of the large-scale path on the lunar surface, and design a safe heuristic function in combination with the EDM map, making the generated path as far away from the dangerous area as possible to enhance the safety of autonomous detection process of the lunar rover. Finally, the Aitken basin of the moon is selected as the simulation scene to verify the effectiveness of the algorithm.
YU Xiaoqiang
,
GUO Jifeng
,
ZHAO Yu
,
YAN Peng
. Fast and safe path planning for lunar rovers[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(1)
: 524153
-524153
.
DOI: 10.7527/S1000-6893.2020.24153
[1] DAVID R. The apollo lunar roving vehicle[EB/OL]. (2016-05-19)[2020-03-19]. http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html.
[2] BRIAN D. The ATHLETE rover[EB/OL]. (2017-08-07)[2020-03-19]. http://www.nasa.gov/multimedia/imagegallery/image_feature_748.html.
[3] ROCKY L. NASA's space explorationvehicle (SEV)[EB/OL]. (2012-08-21)[2020-03-19]. http://www.nasa.gov/exploraion/technology/space_exploration_vehicle/index.html.
[4] 邢琰, 刘祥, 滕宝毅, 等. 月球表面巡视探测自主局部避障规划[J]. 控制理论与应用, 2019, 36(12):2042-2046. XING Y, LIU X, TENG B Y, et al. Autonomous local obstacle avoidance path planning of Lunar surface exploration rovers[J]. Control Theory & Applications, 2019, 36(12):2042-2046(in Chinese).
[5] SUTOH M, OTSUKI M, WAKABAYASHI S, et al. The right path:Comprehensive path planning for lunar exploration rovers[J]. IEEE Robotics & Automation Magazine, 2015, 22(1):22-33.
[6] 张哲, 吴剑, 代冀阳, 等. 基于改进A-Star算法的隐身无人机快速突防航路规划[J]. 航空学报, 2020, 41(5):323692. ZHANG Z, WU J, DAI J Y, et al. Fast penetration path planning for stealth UAV based on improved A-Star algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):323692(in Chinese).
[7] CHAARI I, KOUBAA A, BENNACEUR H, et al. Design and performance analysis of global path planning techniques for autonomous mobile robots in grid environments[J]. International Journal of Advanced Robotic Systems, 2017, 14(2):1-27.
[8] 王全. 基于RRT的全局路径规划方法及其应用研究[D]. 长沙:国防科技大学, 2014:29-31. WANG Q. Research on rapidly-exploring random trees based global path planning and its application[D]. Changsha:National University of Defense Technology, 2014:29-31(in Chinese).
[9] SONG B, WANG Z, SHENG L. A new genetic algorithm approach to smooth path planning for mobile robots[J]. Assembly Automation, 2016, 36(2):138-145.
[10] 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3):322493. ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarially path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322493(in Chinese).
[11] 于天一, 费江涛, 李立春, 等. 月面巡视器路径规划方法研究[J]. 深空探测学报, 2019(4):384-390. YU T Y, FEI J T, LI L C, et al. Study on path planning method of lunar rover[J]. Journal of Deep Space Exploration, 2019(4):384-390(in Chinese).
[12] 李春来, 谭旭, 张晓霞, 等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版), 2018, 43(4):485-495. LI C L, TAN X, ZHANG X X, et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):485-495(in Chinese).
[13] HARUYAMA J, HARA S, HIOKI K, et al. Lunar global digital terrain model dataset produced from SELENE (Kaguya) terrain camera stereo observations[C]//Lunar and Planetary Science Conference, 2012:1200.
[14] SCHOLTEN F, OBERST J, MATZ K D, et al. GLD100:The near-global lunar 100 m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research:Planets, 2012, 117(E12):148-227.
[15] SMITH D E, ZUBER M T, JACKSON G B, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews, 2010, 150(1-4):209-241.
[16] DANIELSSON P E. Euclidean distance mapping[J]. Computer Graphics and Image Processing, 1980, 14(3):227-248.
[17] RUSSELL S J, NORVIG P. Artificial intelligence:A modern approach (3rd.ed)[M]. New Jersey:Prentice Hall, 2010:101-106.
[18] 肖龙, 乔乐, 肖智勇, 等. 月球着陆探测值得关注的主要科学问题及着陆区选址建议[J]. 中国科学:物理学、力学、天文学, 2016,46(2):9-30. XIAO L, QIAO L, XIAO Z Y, et al. Major scientific objectives and candidate landing sites suggested for future lunar explorations[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016,46(2):9-30(in Chinese).
[19] HARABOR D D, GRASTIEN A. Online graph pruning for pathfinding on grid maps[C]//Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011:1114-1119.
[20] AINE S, SWAMINATHAN S, NARAYANAN V, et al. Multi-heuristic a[J]. The International Journal of Robotics Research, 2016, 35(1-3):224-243.