Article

Fatigue-creep life prediction based on cyclic strain characteristics

  • XU Kejun ,
  • XIAO Yang ,
  • QIN Haiqin ,
  • JIA Mingming
Expand
  • Qingdao Branch, Naval Aviation University, Qingdao 266041, China

Received date: 2020-04-20

  Revised date: 2020-05-11

  Online published: 2020-06-24

Supported by

National Natural Science Foundation of China (51975580)

Abstract

To investigate the effect of fatigue-creep interaction on the life of Powder Metallurgy (P/M) superalloy turbine disks under asymmetric loading, low cycle fatigue-creep tests of the P/M FGH96 superalloy are conducted at 550℃ at different stress levels and holding time, obtaining its cyclic strain response and the variation of fatigue-creep life. A fatigue-creep life prediction method based on cyclic strain characteristics is proposed. The new model takes the cyclic strain range as the damage control parameter which correlates with the load holding time and the dynamic cycles. The influences of the load history and holding time on the fatigue-creep damage are comprehensively considered, and the fatigue-creep life prediction and dynamic tracking of consuming life for FGH96 at different stress levels and within different holding time can be realized. Compared with other life prediction models, the new model owns high prediction accuracy with small dispersion of prediction. The life prediction results are mostly within ±2.5 times of the scatter band, and the standard deviation is less than 0.4.

Cite this article

XU Kejun , XIAO Yang , QIN Haiqin , JIA Mingming . Fatigue-creep life prediction based on cyclic strain characteristics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(5) : 524109 -524109 . DOI: 10.7527/S1000-6893.2020.24109

References

[1] 刘新灵, 陶春虎. FGH96粉末高温合金损伤行为与寿命预测[J]. 失效分析与预防, 2011, 6(2):124-129. LIU X L, TAO C H. Damage behavior and life prediction of FGH96 powder metallurgy superalloy[J]. Failure Analysis and Prevention, 2011, 6(2):124-129(in Chinese).
[2] 魏大盛, 王延荣. 粉末冶金涡轮盘裂纹扩展寿命分析[J]. 推进技术, 2008, 29(6):753-758. WEI D S, WANG Y R. Lifing methodology of crack propagation in powder metallurgy turbine disk[J]. Journal of Propulsion Technology, 2008, 29(6):753-758(in Chinese).
[3] TRESA M P, SAMMY T. Nickel-based superalloys for advanced turbine engines:Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-373.
[4] 胡连喜, 冯小云. 粉末冶金高温合金研究及发展现状[J]. 粉末冶金工业, 2018, 28(4):1-6. HU L X, FENG X Y. The research and development of powder metallurgy superalloy[J]. Powder Metallurgy Industry, 2018, 28(4):1-6(in Chinese).
[5] 魏大盛, 杨晓光, 王延荣, 等. 保载条件下FGH95材料的疲劳特性及寿命建模[J]. 航空动力学报, 2007, 22(3):425-430. WEI D S, YANG X G, WANG Y R, et al. Fatigue characteristics FGH95 PM superalloy under dwell condition and modeling for life prediction[J]. Journal of Aerospace Power, 2007, 22(3):425-430(in Chinese).
[6] 田长生, 乔生儒, 陶冶, 等. GH36合金在疲劳和蠕变交互作用下的失效寿命[J]. 航空学报, 1987, 8(11):632-636. TIAN C S, QIAO S R, TAO Y, et al. The failure life of GH36 alloy in fatigue and creep interaction[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(11):632-636(in Chinese).
[7] 姚萍, 王润梓, 郭素娟, 等. GH4169合金蠕变疲劳行为的有限元模拟及寿命预测[J]. 航空学报, 2018, 39(12):422193. YAO P, WANG R Z, GUO S J, et al. Finite element simulations of creep-fatigue behavior and life assessment of GH4169 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422193(in Chinese).
[8] GOSWAMI T. Dwell sensitivity:Part I behavior and modeling[J]. Mechanics of Materials, 1996, 22(2):105-130.
[9] GOSWAMI T, HANNINEN H. Dwell effects on high temperature fatigue behavior:Part I[J]. Materials and Design, 2001, 22(3):199-215.
[10] GOSWAMI T. A new dwell sensitivity damage parameter[J]. Materials and Design, 2004, 25(3):191-197.
[11] 蒋祖国. 估算低周腐蚀疲劳寿命的几个模型[J]. 航空学报, 1989, 10(6):254-258. JIANG Z G. Several models to predict the low cyclic corrosion fatigue life[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(6):254-258(in Chinese).
[12] SALTSMAN J F, HALFORD G R. Procedures for characterizing an alloy and predicting cyclic life with the total strain version of strain range partitioning:NASA-TM-4102[R]. Cleveland:NASA Lewis Research Center, 1989.
[13] KWAI S C, MICHAEL P E, JONATHAN M, et al. Mitigating time-dependent crack growth in Ni-base superalloy components[J]. International Journal of Fatigue, 2016, 82:332-341.
[14] 郭茂文, 刘春荣, 郑雪萍, 等. 粉末高温合金的研究现状[J]. 热加工工艺, 2017, 46(20):11-13. GUO M W, LIU C R, ZHENG X P, et al. Research status of powder metallurgy superalloy[J]. Hot Working Technology, 2017, 46(20):11-13(in Chinese).
[15] 韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状[J]. 中国材料进展, 2014, 33(12):748-754. HAN Z Y, ZENG G, LIANG S J, et al. Development in powder production technology of Ni-based superalloy[J]. Materials China, 2014, 33(12):748-754(in Chinese).
[16] 苏运来, 陆山, 杨茂, 等. 考虑缺口和体积效应的轮盘等效体积概率寿命分析方法[J]. 推进技术, 2018, 39(12):2820-2827. SU Y L, LU S, YANG M, et al. Equivalent volume analysis method accounting for notch effect and volume effect on probabilistic fatigue life estimation for disk[J]. Journal of Propulsion Technology, 2018, 39(12):2820-2827(in Chinese).
[17] 苏运来, 陆山, 杨茂, 等. 任意应力比下涡轮盘的塑性应变能寿命模型[J]. 航空动力学报, 2017, 32(4):828-834. SU Y L, LU S, YANG M, et al. Plastic strain energy-life model of turbine disk under various stress ratios[J]. Journal of Propulsion Technology, 2017, 32(4):828-834(in Chinese).
[18] WANG Y R, WANG X C, ZHONG B, et al. Estimation of fatigue parameters in total strain life equation for powder metallurgy superalloy FGH96 and other metallic materials[J]. International Journal of Fatigue, 2019, 122:116-124.
[19] 刘晓菲. FGH96粉末高温合金疲劳小裂纹扩展行为及寿命预测研究[D]. 南昌:南昌航空大学, 2019:55-88. LIU X F. Study on small crack propagation behavior and life prediction of FGH96 powder superalloy[D]. Nanchang:Nanchang Hangkong University, 2019:55-88(in Chinese).
[20] 胡绪腾. 粉末高温合金高温疲劳寿命模型研究[D]. 南京:南京航空航天大学, 2005:78-105. HU X T. Research on high temperature fatigue life models of powder metallurgy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:78-105(in Chinese).
[21] 张国栋, 何玉怀, 苏彬. 粉末高温合金FGH95和FGH96的热机械疲劳性能[J]. 航空材料学报, 2011, 31(6):96-100. ZHANG G D, HE Y H, SU B. Thermal-mechanical fatigue performance of powder metallurgy superalloy FGH95 and FGH96[J]. Journal of Aeronautical Materials, 2011, 31(6):96-100(in Chinese).
[22] 冯引利, 吴长波, 郜伟强, 等. FGH96涡轮盘低循环疲劳寿命分析技术与试验[J]. 航空动力学报, 2012, 27(3):628-634. FENG Y L, WU C B, GAO W Q, et al. Analysis technology and experiment for FGH96 disk's LCF life[J]. Journal of Aerospace Power, 2012, 27(3):628-634(in Chinese).
[23] 冯引利, 杨健, 吴长波. 考虑表面加工状态的粉末盘低循环疲劳寿命分析[J]. 航空动力学报, 2018, 33(2):265-272. FENG Y L, YANG J, WU C B. Analysis of powder alloy disk's low cycle fatigue life with surface machining status[J]. Journal of Aerospace Power, 2018, 33(2):265-272(in Chinese).
[24] 姚志浩, 董建新, 张麦仓, 等. 组织特征对粉末高温合金FGH96疲劳裂纹扩展速率的影响[J]. 机械工程学报, 2013, 49(20):158-164. YAO Z H, DONG J X, ZHANG M C, et al. Effects of microstructure characteristics on fatigue crack growth rate of powder metallurgy superalloy FGH96[J]. Journal of Mechanical Engineering, 2013, 49(20):158-164(in Chinese).
[25] 聂潇乾, 张成成, 王润梓, 等. 粉末冶金FGH96镍基高温合金的蠕变-疲劳交互行为[J]. 机械工程材料, 2019, 43(6):8-11. NIE X Q, ZHANG C C, WANG R Z, et al. Creep-fatigue interaction behavior of powder metallurgy nickel-based superalloy FGH96[J]. Materials for Mechanical Engineering, 2019, 43(6):8-11(in Chinese).
[26] 魏大盛, 王延荣, 王相平, 等. 基于应力循环特征的裂纹萌生寿命预测方法[J]. 航空动力学报, 2012, 27(10):2342-2347. WEI D S, WANG Y R, WANG X P, et al. Life prediction method based on characteristic of cyclic stress[J]. Journal of Aerospace Power, 2012, 27(10):2342-2347(in Chinese).
[27] SMITH R N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5:767-778.
[28] MANSON S S, HALFORD G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture, 1981, 17:169-172.
[29] 张智胜. 航空发动机涡轮盘疲劳寿命预测与动态可靠性分析[D]. 成都:电子科技大学, 2014:41-42. ZHANG Z S. Life prediction and dynamic reliability analysis of aircraft turbine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2014:41-42(in Chinese).
Outlines

/