Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer

  • SHAO Shuyi ,
  • CHEN Mou ,
  • ZHAO Qijun
Expand
  • 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-05-10

  Revised date: 2020-05-28

  Online published: 2020-06-18

Supported by

Aeronautical Science Foundation of China (201957052001); Natural Science Foundation of Jiangsu Province for Young Scholars (SBK2020042328); Scientific Research Foundation for Nanjing University of Aeronautics and Astronautics (1003-YAH19073)

Abstract

To facilitate the computer implementation of the flight control scheme, a discrete-time tracking control method is proposed based on a disturbance observer for the angular motion equation of quadrotor Unmanned Aerial Vehicle (UAV) with external disturbances and actuator faults. Adverse effects of external disturbances and actuator faults are restrained by designing a discrete-time disturbance observer. The designed disturbance observer is then used in the design of the discrete-time controller. Finally, the effectiveness of the proposed control approach is proven. Numerical simulation results show that the designed discrete-time controller can guarantee stable tracking errors of the quadrotor UAV under actuator faults and disturbances.

Cite this article

SHAO Shuyi , CHEN Mou , ZHAO Qijun . Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(S2) : 724283 -724283 . DOI: 10.7527/S1000-6893.2020.24283

References

[1] ALTUǦ T M. EKF based attitude estimation and stabilization of a quadrotor UAV using vanishing points in catadioptric images[J]. Journal of Intelligent & Robotic Systems, 2011, 62:587-607.
[2] 陈志明, 牛康, 李磊, 等. 基于BSP-ANN的四旋翼无人机轨迹跟踪方法[J]. 航空学报, 2018, 39(6):321924. CHEN Z M, NIU K, LI L, et al. Trajectory tracking for quadrotor UAV based on BSP-ANN[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321924(in Chinese).
[3] 邢伯阳, 潘峰, 王位, 等. 基于复合地标导航的动平台四旋翼飞行器自主优化降落技术[J]. 航空学报, 2019, 40(6):322601. XING B Y, PAN F, WANG W, et al. Moving platform self-optimization landing technology for quadrotor based on hybrid landmark[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):322601(in Chinese).
[4] ZHANG Y, YU X, WANG B, LIU D. Design and implementation of fault-tolerant control algorithms for an unmanned quadrotor system[J]. Control Engineering of China, 2016, 23(12):1874-1882.
[5] 张佳龙, 闫建国, 张普. 基于自适应方法的多无人机编队队形控制[J]. 航空学报, 2020, 41(1):323385. ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation forming control based on adaptive method under wind field disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):323385(in Chinese).
[6] 张秀云, 宗群, 窦立谦, 等. 柔性航天器振动主动抑制及姿态控制[J]. 航空学报, 2019, 40(4):322503. ZHANG X Y, ZHONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):322503(in Chinese).
[7] CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods-An overview[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2):1083-1095.
[8] CHEN W H, BALANCE D J, GAWTHROP P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938.
[9] XU B, SHOU Y, LUO J, et al. Neural learning control of strict-feedback systems using disturbance observer[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(5):1296-1307.
[10] SHAO S, CHEN M, CHEN S, et al. Adaptive neural control for an uncertain fractional-order rotational mechanical system using disturbance observer[J]. IET Control Theory & Applications, 2016, 10(16):1972-1980.
[11] XU B. Disturbance observer-based dynamic surface control of transport aircraft with continuous heavy cargo airdrop[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 47(1):161-170.
[12] LIU H, WANG H, SUN J. Attitude control for tilt rotorcraft based on sliding mode containing disturbance observer[C]//The 2017 4th International Conference on Systems and Informatics, 2017:84-88.
[13] LEE D. Nonlinear disturbance observer-based robust control for spacecraft formation flying[J]. Aerospace Science and Technology, 2018, 76:82-90.
[14] CHEN F, LIU W, ZHANG K, et al. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer[J]. Nonlinear Dynamics, 2016, 85(2):1281-1295.
[15] BESNARD L, SHTESSEL Y B, LANDRUM B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer[J]. Journal of the Franklin Institute, 2012, 349(2):658-684.
[16] LEE K, BACK J, CHOY I. Nonlinear disturbance observer based robust attitude tracking controller for quadrotor UAVs[J]. International Journal of Control, Automation and Systems, 2014, 12(6):1266-1275.
[17] WANG H, CHEN M. Trajectory tracking control for an indoor quadrotor UAV based on the disturbance observer[J]. Transactions of the Institute of Measurement and Control, 2016, 38(6):675-692.
[18] LIN X, YU Y, SUN C Y. A decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observer[J]. Nonlinear Dynamics, 2019, 97(1):781-795.
[19] 范佳明, 陈奕梅. 四旋翼无人机反步自适应容错控制研究[J]. 计算机仿真, 2017, 34(7):79-82. FAN J M, CHEN Y M. Research on adaptive backstepping fault-tolerant control for quadrotor UAV[J]. Computer Simulation, 2017, 34(7):79-82(in Chinese).
[20] 董旺, 齐瑞云, 姜斌. 空天飞行器直接力/气动力复合容错控制[J]. 航空学报, 2020, 41(11):623850. DONG W, QI R Y, JIANG B. Composite fault tolerant control for aerospace vehicle with swing engines and aerodynamic Fins[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623850(in Chinese).
[21] 张普, 薛惠锋, 高山. 基于分布式自适应的多智能体容错一致性控制[J].航空学报, 2020, 41(3):323539. ZHANG P, XUE H F, GAO S. Distributed adaptive fault-tolerance consensus control for multi-agent system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):323539(in Chinese).
[22] 韩治国, 张科, 吕梅柏, 等. 航天器自适应快速非奇异终端滑模容错控制[J]. 航空学报, 2016, 37(10):3092-3100. ZHANG Z G, ZHANG K, LYU M B, et al. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3092-3100(in Chinese).
[23] HU Q, XIAO L, WANG C. Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties[J]. Chinese Journal of Aeronautics, 2019, 32(3):674-687.
[24] WANG X, XIANG C, NAJJARAN H, et al. Robust adaptive fault-tolerant control of a tandem coaxial ducted fan aircraft with actuator saturation[J]. Chinese Journal of Aeronautics, 2018, 31(6):1298-1310.
[25] MAREELS I M Y, PENFOLD H B, EVANS R J. Controlling nonlinear time-varying systems via Euler approximations[J]. Automatica, 1992, 28(4):681-696.
Outlines

/