The integrated navigation system including an all-time star tracker and a strap-down inertial navigation system with the advantages of high precision and strong autonomy has been extensively applied in fields such as planes, drones and vessels. During the long-term operation of the integrated Inertial Navigation System (INS), the change in force and heat leads to the drift of the installing matrix, affecting the accuracy of the INS. Moreover, the all-time star tracker influenced by the background light in the sky usually has a small Field of View and can only observe one star at a time, therefore unable to directly estimate the installing matrix according to one star chart. A new method is presented for the estimation of attitude matrixes in real time based on the Levernberg-Marquart (L-M) algorithm. Taking advantage of the attitude measurement values of the INS, this approach transfers the observed star vectors at different times to the same time in a unified coordinate system, thereby constructing a cost function relating the observation vector errors of multiple observation stars and the corresponding navigation star vectors in the least square sense. After that, the L-M algorithm with adaptive step size is used for the iterative solution, obtaining the on-line real-time change in the installing matrix. Experimental data show that the pointing accuracy of single stars projecting onto the INS is twice as high as that before using this method and has an estimation time shorter than 5 ms, meeting the engineering requirements for this kind of integrated INS.
WANG Li
,
SUN Xiuqing
,
ZHANG Chunming
,
LI Xiao
,
WU Fenzhi
. Fast online estimation method for installing matrix between all-time star tracker and inertial navigation system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020
, 41(8)
: 624117
-624117
.
DOI: 10.7527/S1000-6893.2020.24117
[1] VAN ALLEN J A. Basic principles of celestial navigation[J]. American Journal of Physics, 2004, 72(11):1418-1424.
[2] 王新龙,马闪. 高空长航时无人机高精度自主定位方法[J]. 航空学报, 2008, 29(S1):S39-S45. WANG X L, MA S. High precision autonomous localization method for high altitude and long-flight-time of unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(S1):S39-S45(in Chinese).
[3] QUAN W, GONG X, FANG J, et al. Study for real-time ability of INS/CNS/GNSS integrated navigation method[M]. Berlin:Springer, 2015:307-329.
[4] 曾威, 崔玉平, 李邦清, 等. 惯性/星光组合导航应用与发展[J]. 飞航导弹, 2011(9):74-79. ZENG W, CUI Y P, LI B Q, et al. Review of application and development for inertial stellar integrated navigation system[J]. Maneuver Missile, 2011(9):74-79(in Chinese).
[5] GAO H, WATSON J M, STUART J S, et al. Design of volume hologram filters for suppression of daytime sky brightness in artificial satellite detection[J]. Optics Express, 2013, 21(5):6448-6458.
[6] 徐卿, 赵春晖, 李晓. 白昼星敏感器的研究现状及关键技术[J]. 光学技术, 2016, 42(6):523-528. XU Q, ZHAO C H, LI X. The current research and key technology of day star sensors[J]. Aerospace Science and Technology, 2016, 42(6):523-528(in Chinese).
[7] WANG D J, LV H F, WU J. A novel SINS/CNS integrated navigation method using model constraints for ballistic vehicle applications[J]. Navigation, 2017, 70(11):75-83.
[8] 黄远, 王可东, 刘宝. 机动天基平台惯性/天文导航组合模式研究[J]. 红外与激光工程, 2012, 41(6):1622-1628. HUANG Y,WANG K D,LIU B. INS/CNS integration schemes for a maneuvering spacecraft[J]. Infrared and Laser Engineering, 2012, 41(6):1622-1628(in Chinese).
[9] 付建楠. 船用捷联式惯性天文导航误差分析与算法仿真[D]. 哈尔滨:哈尔滨工程大学, 2011. FU J N. A integrated navigation method using CCD star tracker and strapdown inertial navigation system[D]. Harbin:Harbin Engineering University, 2011(in Chinese).
[10] 张鹏. 船用星敏感器/惯性导航系统在线标定及组合导航技术研究[D]. 哈尔滨:哈尔滨工程大学, 2016. ZHANG P. A integrated navigation method using CCD star tracker and strapdown inertial navigation system[D]. Harbin:Harbin Engineering University, 2016(in Chinese).
[11] 杨波, 王跃钢, 徐洪涛. 弹载惯性/卫星/星光高精度组合导航[J]. 中国惯性技术学报, 2018, 18(4):7-15. YANG B, WANG Y G, XU H T. High-precision integrated inertial/satellite/starlight navigation for missile[J]. Journal of Chinese Inertial Techonlogy, 2018, 18(4):7-15(in Chinese).
[12] 张磊. 船用捷联式惯性/天文组合导航方法的研究[D]. 哈尔滨:哈尔滨工程大学, 2012. ZHANG L. Research on shipboard strapdown inertial astronomical integrated navigation method[D]. Harbin:Harbin Engineering University, 2012(in Chinese).
[13] 林星辰.船用捷联惯性/天文组合导航系统研究[D]. 哈尔滨:哈尔滨工程大学, 2014. LIN X C. Research on shipboard strapdown inertial astronomical integrated navigation method[D]. Harbin:Harbin Engineering University, 2014(in Chinese).
[14] 李新鹏, 孙少勇, 郑循江, 等. 高精度星敏感器安装矩阵在轨实时校准方法[J]. 红外与激光工程, 2018, 47(12):1-7. LI X P, SUN S Y, ZHENG X J, et al. On-orbit real time installation matrix calibration method for high accuracy star trackers[J]. Infrared and Laser Engineering, 2018, 47(12):1-7(in Chinese).
[15] 焦宏伟, 郭敬明, 苏绪伟, 等. 船载星敏感器安装矩阵动态标定方法[J]. 光电工程, 2016, 43(6):7-12. JIAO H W, GUO J M, SU X W, et al. A dynamic installation matrix calibration method of ship-borne star sensor[J]. Opto-Electronic Engineering, 2016, 43(6):7-12(in Chinese).
[16] NING X L, ZHANG J, GUI M Z et al. A fast calibraion method of the star sensor installation error based on observability analysis for the tightly coupled sins/cns integrated navigation system[J]. IEEE Sensors Journal, 2018, 18(6):6794-6803.
[17] 申娟, 张广军, 魏新国. 基于卡尔曼滤波的星敏感器在轨校准方法[J]. 航空学报, 2010, 31(6):23-30. SHEN J, ZHANG G J, WEI X G. On-orbit calibration of star sensor based on Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):23-30(in Chinese).
[18] KIM C J, KIM H S, PARK H W. Modeling and analysis of measurement time synchronization error in transfer alignment[J]. Chemical Industry & Engineering Progress, 2008, 32(12):3026-3031.
[19] 熊智, 陈海明, 郁丰. 耦合位置误差的机载惯性/星光组合算法研究[J]. 宇航学报, 2010, 31(12):2683-2690. XIONG Z, CHEN H M, YU F. A coupled position error based algorithm of airborne integrated INS with starlight[J]. Aerospace Science and Technology, 2010, 31(12):2683-2690(in Chinese).
[20] JAM A, ZHANG C Y, FANG J C.An algorithm for astro-inertial navigation using CCD star sensors[J]. Aerospace Science and Technology, 2006, 10(2):449-454.