Review

In-orbit assembly technology: Review

  • WANG Mingming ,
  • LUO Jianjun ,
  • YUAN Jianping ,
  • WANG Jiawen ,
  • LIU Cong
Expand
  • 1. Research&Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China;
    2. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-02-29

  Revised date: 2020-03-22

  Online published: 2020-06-18

Supported by

Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20180508151938535); National Natural Science Foundation of China (61973256, 61690211)

Abstract

The construction demands for large space platforms and infrastructures such as space stations, space telescopes, large communication antennas, space solar power stations, in-orbit supply stations, deep space exploration stations and extraterrestrial bases, which represent national scientific and technological capability, are constantly increasing. The autonomous construction of these projects in space remains a huge challenging task. Since large space infrastructures play a significant role in future space exploration missions, various investigations have been performed by different space agencies to cope with this issue. This paper presents an overview of in-space assembly studies, systematically summarizing the research status and technological development of in-orbit assembly. The technological progress of manned and unmanned in-orbit assembly is first analyzed, and the development roadmap, assembly levels and methods of in-orbit assembly technology summarized. On this basis, the technical requirements for and application prospects of in-orbit assembly are sorted out, and the key enabling technologies of in-orbit assembly—the modular technology, robotic technology and ground simulation assembly technology are concluded, which are expected to provide useful reference for the future research of space in-orbit assembly.

Cite this article

WANG Mingming , LUO Jianjun , YUAN Jianping , WANG Jiawen , LIU Cong . In-orbit assembly technology: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523913 -523913 . DOI: 10.7527/S1000-6893.2020.23913

References

[1] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007,28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007,28(4):805-811(in Chinese).
[2] ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Science, 2014, 68(8):1-26.
[3] 田甜, 刘海印. 美国航空航天局机器人在轨加注任务简析[J]. 中国航天, 2019(4):42-47. TIAN T, LIU H Y. Brief analysis of NASA robotic refueling task[J]. Aerospace China, 2019(4):42-47(in Chinese).
[4] GEBHARDT C. Northrop Grumman makes history, mission extension vehicle docks to target satellite[EB/OL]. (2020-02-26)[2020-05-01]. https://www.nasaspaceflight.com/2020/02/northrop-grumman-history-mission-extension-vehicle-docks-satellite/.
[5] W HJ. 我国太空"加油"技术完成在轨验证[J]. 军民两用技术与产品, 2016(15):16. W HJ. Space "fueling" technology completes on-orbit verification of China[J]. Dual Use Technologies & Products, 2016(15):16(in Chinese).
[6] 白明生, 金勇, 雷剑宇, 等. 天舟一号货运飞船研制[J]. 载人航天, 2019, 25(2):249-255. BAI M S, JIN Y, LEI J Y, et al. Research and development of Tianzhou-1 cargo spacecraft[J]. Manned Spaceflight, 2019, 25(2):249-255(in Chinese).
[7] 张峤, 刘冬雨, 罗超, 等. 密封舱内漂浮小球运动规律的数值模拟研究[J]. 航天器环境工程, 2018, 35(4):323-329. ZHANG Q, LIU D Y, LUO C, et al. Numerical analysis of the movement characteristics of floating balls in a pressurized cabin[J]. Spacecraft Environment Engineering, 2018, 35(4):323-329.
[8] OEGERLE W R, PURVES L R, BUDINOFF J G, et al. Concept for a large scalable space telescope:In-space assembly[C]//Space Telescopes and Instrumentation I:Optical, Infrared, and Millimeter. Orlando:International Society for Optics and Photonics, 2006:62652C.
[9] DATASHVILI L, ENDLER S, WEI B, et al. Study of mechanical architectures of large deployable space antenna apertures:From design to tests[J]. CEAS Space Journal, 2013, 5(3-4):169-184.
[10] CHENG Z A, HOU X, ZHANG X, et al. In-orbit assembly mission for the space solar power station[J]. Acta Astronautica, 2016, 129:299-308.
[11] NASA. On-orbit satellite servicing study, project report:NP-2010-08-162-GSFC[R]. Washington, D.C.:NASA Goddard Space Flight Center, 2010.
[12] THRONSON H, GEFFRE J, PRUSHA S, et al. The lunar L1 gateway concept:Supporting future major space science facilities[C]//2nd Workshop on New Concepts for Far-Infrared and Submillimeter Space Astronomy, 2004:20040074295.
[13] BENAROYA H, BERNOLD L. Engineering of lunar bases[J]. Acta Astronautica, 2008, 62(4-5):277-299.
[14] 贾平. 国外在轨装配技术发展简析[J]. 国际太空, 2016(12):61-64. JIA P. Development analysis of foreign on-orbit assembly technologies[J]. Space International, 2016(12):61-64(in Chinese).
[15] 郭继峰, 王平, 崔乃刚. 大型空间结构在轨装配技术的发展[J]. 导弹与航天运载技术, 2006(3):28-35. GUO J F, WANG P, CUI N G. Development of on-orbit assembly of large space structures[J]. Missile and Space Vehicle, 2006(3):28-35(in Chinese).
[16] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J]. 载人航天, 2015, 21(5):435-443. LIU H, JIANG Z N, LIU Y C. Review of space manipulator technology[J]. Manned Spaceflight, 2015, 21(5):435-443(in Chinese).
[17] ALHORN D C. Autonomous assembly of modular structures in space and on extraterrestrial locations[C]//AIP Conference Proceedings. Melville:American Institute of Physics, 2005:1121-1128.
[18] SHAYLER D J, DAVID S. Skylab:America's space station[M]. Berlin:Springer Science & Business Media, 2001.
[19] BEKEY I. Space construction results:The EASE/ACCESS flight experiment[J]. Acta Astronautica, 1988, 17(9):987-996.
[20] HEARD JR W L, WATSON J J, ROSS J L, et al. Eva space construction:Experience and fundamental issues[C]//34th Annual AAS International Conference. Washington, D.C.:AAS, 1987:395-414.
[21] HEARD W L, BUSH H G, WALLSON R E, et al. A mobile work station concept for mechanically aided astronaut assembly of large space trusses:NASA-TP-2108[R]. Washington, D.C.:NASA Langley Technical Report Server, 1983.
[22] HEARD JR W L, WATSON J J, LAKE M S, et al. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the space station freedom truss:NASA-TP-3254[R]. Washington, D.C.:NASA Langley Technical Report Server, 1992.
[23] LAKE M S, HEARD W L, WATSON J J, et al. Evaluation of hardware and procedures for astronaut assembly and repair of large precision reflectors:NASA-TP-2000-210317[R]. Washington, D.C.:NASA Langley Technical Report Server, 2000.
[24] WHITTAKER W, URMSON C, STARITZ P, et al. Robotics for assembly, inspection, and maintenance of space macrofacilities[C]//Proceedings of AIAA Space 2000 Conference and Exposition. Reston:AIAA, 2000:AIAA-2000-5288.
[25] UENO H, SATOH H, AOKI S, et al. On-orbit construction experiment by tele-operated robot arm[C]//Proceedings of the 14th International Symposium on Automation and Robotics in Construction, 1997:246-253.
[26] STARITZ P J, SKAFF S, URMSON C, et al. Skyworker:A robot for assembly, inspection and maintenance of large-scale orbital facilities[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2001:4180-4185.
[27] HENSHAW C G. The DARPA phoenix spacecraft servicing program:Overview and plans for risk reduction[C]//International Symposium on Artificial Intelligence and Robotics & Automation in Space. Quebec:Canadian Space Agency, 2014.
[28] THRONSON H, PETERSON B M, GREENHOUSE M, et al. Human space flight and future major space astrophysics missions:Servicing and assembly[C]//SPIE Optical Engineering+Applications. Bellingham:SPIE, 2017:10398.
[29] HOYT R P. SpiderFab:An architecture for self-fabricating space systems[C]//AIAA Space 2013 conference and exposition. Reston:AIAA, 2013.
[30] BEALL A. NASA funds next phase of robotic satellite assembly project[EB/OL]. (2017-09-12)[2020-05-01]. https://www.therobotreport.com/nasa-funds-next-phase-robotic-satellite-assembly-project/.
[31] WERNER D. NASA, Made in Space think big with Archinaut, a robotic 3D printing demo bound for ISS[EB/OL]. (2016-02-23)[2020-05-01].https://spacenews.com/nasa-made-in-space-think-big-with-archinaut-a-robotic-3d-prin-ting-demo-bo-und-for-iss/.
[32] BOWMAN L M, BELVIN W K, KOMENDERA E E, et al. In-space assembly application and technology for NASA's future science observatory and platform missions[C]//Space Telescopes and Instrumentation 2018:Optical, Infrared, and Millimeter Wave. International Society for Optics and Photonics, 2018:1069826.
[33] WILL R, RHODES M, DOGGETT W R, et al. An automated assembly system for large space structures[M]. Intelligent Robotic Systems for Space Exploration. Berlin:Springer, 1992:39-110.
[34] HANKINS W, MIXON R, JONES H, et al. Space truss assembly using teleoperated manipulators:N89-10087[R]. Washington, D.C.:NASA Technical Report Server, 1987.
[35] LANE J C, CARIGNAN C, AKIN D L. Reconfigurable control station design for robotic operations[C]//1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation. Piscataway:IEEE Press, 1997:3722-3727.
[36] DORSEY J, WATSON J. Space Assembly of Large Structural System Architectures (SALSSA)[M]. Reston:AIAA SPACE, 2016:5481.
[37] European Commission. Guidelines for strategic research cluster on space robotics technologies, in Horizon 2020 Space Call 2016[R]. Brussels:European Commission, 2016.
[38] WERNER D. Satlets:Crazy idea or ingenious concept? This week's test on ISS will offer clues[EB/OL]. (2017-10-24)[2020-05-01]. https://spacenews.com/satlets-crazy-idea-or-ingenious-concept-this-weeks-test-on-iss-will-offer-clues/.
[39] LIU H, TAN Y, LIU Y, et al. Development of Chinese large-scale space end-effector[J]. Journal of Central South University of Technology, 2011, 18(3):600-609.
[40] YOON Y, RUS D. Shady3D:A robot that climbs 3D trusses[C]//Proceedings of 2007 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2007:4071-4076.
[41] HJELLE D, LIPSON H. A robotically reconfigurable truss[C]//2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. Piscataway:IEEE Press, 2009:73-78.
[42] BEDROSSIAN N. International space station assembly and operation control challenges[C]//AAS Guidance and Control Conference. Washington, D.C.:AAS, 2000:AAS 00-022.
[43] SAUNDERS C, LOBB D, SWEETING M, et al. Building large telescopes in orbit using small satellites[J]. Acta Astronautica, 2017, 141:183-195.
[44] HILTZ M, RICE C, BOYLE K, et al. Canadarm:20 years of mission success through adaptation[C]//International Symposium on Artificial Intelligence and Robotics & Automation in Space. Quebec:Canadian Space Agency, 2001.
[45] SUZUKI Y, IMADA T. Concept and technology of HTV-R:An advanced type of H-Ⅱ transfer vehicle[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10:9-18.
[46] BONING P, DUBOWSKY S. Coordinated control of space robot teams for the on-orbit construction of large flexible space structures[J]. Advanced Robotics, 2010, 24(3):303-323.
[47] FOUST R, CHUNG S J, HADAEGH F. Autonomous in-orbit satellite assembly from a modular heterogeneous swarm using sequential convex programming[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston:AIAA, 2016:5271.
[48] CHEN T, WEN H. Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer[J]. Acta Astronautica, 2018, 147:86-96.
[49] JANKOVIC M, BRINKMANN W, BARTSCH S, et al. Concepts of active payload modules and end-effectors suitable for Standard Interface for Robotic Manipulation of payloads in future space missions (SIROM) interface[C]//2018 IEEE Aerospace Conference. Piscataway:IEEE Press, 2018:1-15.
[50] MAY S. NASA-The Canadian Crane[EB/OL]. (2009-04-10)[2020-05-01]. https://www.nasa.gov/audience/foreducators/k-4/features/F_Canadian_Crane.html.
[51] JENETT B, CHEUNG K. BILL-E:Robotic platform for locomotion and manipulation of lightweight space structures[C]//25th AIAA/AAS Adaptive Structures Conference. Reston:AIAA, 2017:1876.
[52] SCHERVAN T, KORTMANN M, SCHRODER K, et al. iBOSS modular plug & play-standardized building block solutions for future space systems enhancing capabilities and flexibility, design, architecture and operations[C]//68th International Astronautical Congress. Sydney:IAF, 2017:IAC-17-D1.2.3.
[53] SOROKIN I V, MARKOV A V. Utilization of space stations:1971-2006[J]. Journal of Spacecraft and Rockets, 2008, 45(3):600-607.
[54] HELORET J Y, LAINE R. Overview of the development of the European automated transfer vehicle[C]//34th COSPAR Scientific Assembly. IAF, 2002.
[55] INABA N, ODA M. Autonomous satellite capture by a space robot:World first on-orbit experiment on a Japanese robot satellite ETS-VⅡ[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2000.
[56] OGILVIE A, ALLPORT J, HANNAH M, et al. Autonomous satellite servicing using the orbital express demonstration manipulator system[C]//International Symposium on Artificial Intelligence and Robotics & Automation in Space. i-SAIRAS, 2008:25-29.
[57] BURROWS C. Hubble space telescope:Optical telescope assembly handbook[M]. Space Telescope Science Institute, 1990.
[58] REED B B, SMITH R C, NAASZ B J, et al. The Restore-L servicing mission[M]. Reston:AIAA, 2016.
[59] PATANE S, JOYCE E R, SNYDER M P, et al. Archinaut:In-space manufacturing and assembly for next-generation space habitats[C]//AIAA Space and Astronautics Forum and Exposition. Reston:AIAA, 2017.
[60] WATSON J J, COLLINS T J, BUSH H G. A history of astronaut construction of large space structures at NASA Langley Research Center[C]//Proceedings of IEEE Aerospace Conference. Piscataway:IEEE Press, 2002:7.
[61] 李志奇, 刘伊威, 于程隆, 等. 机器人航天员精细操作方法及在轨验证[J]. 载人航天, 2019, 25(5):606-612. LI Z Q, LIU Y W, YU C L, et al. Elaborate operation method for robot astronaut and its on-orbit verification[J]. Manned Spaceflight, 2019, 25(5):606-612(in Chinese).
[62] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. LIU H, LI Z Q, LIU Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. Scientia Sinica:Technologica, 2018, 48(12):1313-1320(in Chinese).
[63] 张庭, 姜力, 刘宏. 仿生假手抓握力控制策略[J]. 机器人, 2012, 34(2):190-196. ZHANG T, JIANG L, LIU H. A grasping force control strategy for anthropomorphic prosthetic hand[J]. Robot, 2012, 34(2):190-196(in Chinese).
[64] 郭继峰, 王平, 崔乃刚. 空间在轨装配任务规划[M]. 北京:国防工业出版社, 2014. GUO J F, WANG P, CUI N G. On-orbit assembly task planning in space[M]. Beijing:National Defense Industry Press, 2014(in Chinese).
[65] 郭继峰, 王平, 崔乃刚. 大型空间桁架结构装配序列的分层规划方法[J]. 哈尔滨工业大学学报, 2008(3):350-353. GUO J F, WANG P, CUI N G. Hierarchical planning method for assembly sequences of large space truss structure[J]. Journal of Harbin Institute of Technology, 2008(3):350-353(in Chinese).
[66] 郭继峰, 王平, 程兴, 等. 一种用于空间在轨装配的两级递阶智能规划算法[J]. 宇航学报, 2008,29(3):335-339, 345. GUO J F, WANG P, CHENG X, et al. Two-level hierachical intelligent planning algorithm for on-orbit assembly[J]. Journal of Astronautics, 2008,29(3):335-339, 345(in Chinese).
[67] 于晓强, 郑红星. 基于拓展CBBA算法的在轨装配航天器任务分配技术研究[J]. 无人系统技术, 2019(4):9. YU X Q, ZHENG H X. The extended-CBBA-based decentralized auctions algorithm for on-orbit assembly spacecraft task allocation[J]. Unmanned Systems Technology, 2019(4):9(in Chinese).
[68] 徐文福, 周瑞兴, 孟得山. 空间机器人在轨更换ORU的力/位混合控制方法[J]. 宇航学报, 2013, 34(10):1353-1361. XU W F, ZHOU R X, MENG D S. A hybrid force/position control method of space robot performing on-orbit ORU replacement[J]. Journal of Astronautics, 2013, 34(10):1353-1361(in Chinese).
[69] 刘兆晶. 模块化可展开抛物面天线支撑机构设计与研制[D]. 哈尔滨:哈尔滨工业大学, 2011. LIU Z J. Design and manufacture of supporting structure for modular deployable parabolic antenna[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[70] 田大可. 模块化空间可展开天线支撑桁架设计与实验研究[D]. 哈尔滨:哈尔滨工业大学, 2011. TIAN D K. Design and experimental research on truss structure for modular space deployable antenna[D]. Harbin:Harbin Institute of technology, 2011(in Chinese).
[71] 时月天, 侯绪研, 饶笑山, 等. 面向空间太阳能电站在轨装配的爬行机器人关键技术[J]. 空间电子技术, 2018, 15(2):106-112. SHI Y T, HOU X Y, RAO X S, el al. Research on the key technology of crawler robot orbiting on space solar power station[J]. Space Electronic Technology, 2018, 15(2):106-112(in Chinese).
[72] 马尚君, 刘更, 吴立言, 等. 航天器结构的模块化设计方法综述[J]. 机械科学与技术, 2011, 30(6):960-967. MA S J, LIU G, WU L Y, et al. A review of the modular design methods for spacecraft structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(6):960-967(in Chinese).
[73] 罗浩, 刘更, 马尚君, 等. 可在轨展开的航天器模块化结构设计分析平台研究[J]. 机械科学与技术, 2012, 31(1):29-33. LUO H, LIU G, MA S J, et al. Study on the modular design and analysis platform for spacecraft deployable on-orbit[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1):29-33(in Chinese).
[74] 黄攀峰, 常海涛, 鹿振宇, 等. 面向在轨服务的可重构细胞卫星关键技术与展望[J]. 宇航学报, 2016, 37(1):1-10. HUANG P F, CHANG H T, LU Z Y, et al. Key techniques of on-orbit service-oriented reconfigurable cellularized satellite and its prospects[J]. Journal of Astronautics, 2016, 37(1):1-10(in Chinese).
[75] 李团结, 马小飞, 华岳, 等. 大型空间天线在轨装配技术[J]. 载人航天, 2013, 19(1):86-90. LI T J, MA X F, HUA Y, et al. On-orbit assembly technology of large space antennas[J]. Manned Spaceflight, 2013, 19(1):86-90(in Chinese).
[76] 马小飞, 黄志荣, 华岳, 等. 大型模块化天线反射器在轨组装技术[C]//2014年可展开空间结构学术会议. 北京:中国力学学会, 2014:31. MA X F, HUANG Z R, HUA Y, et al. Assembly technology of large modular antenna reflector[C]//2014 Conference on Deployable Space Structure. Beijing:Chinese Society of Mechanics, 2014:31(in Chinese).
[77] 付伟达, 张士峰, 张锐, 等. 小卫星测控的模块化自动测试系统构建[J]. 航天器工程, 2013, 22(2):104-107. FU W D, ZHANG S F, ZHANG R, et al. Construction of modular automatic test systems for small satellite TT & C[J]. Spacecraft Engineering, 2013, 22(2):104-107(in Chinese).
[78] 朱嘉琦, 韩哈斯敖其尔, 于鹏, 等. 在轨组装机器人抓取机构设计与控制系统研究[J]. 机械传动, 2019, 43(2):79-84. ZHU J Q, HAN H S A Q R, YU P, et al. Research of design and control system of grab mechanism of on-orbit assembly robot[J]. Journal of Mechanical Transmission, 2019, 43(2):79-84(in Chinese).
[79] 王洪亮, 郭亮, 熊琰, 等. 超大口径在轨组装红外望远镜遮阳罩热设计[J]. 红外与激光工程, 2019, 48(12):202-207. WANG H L, GUO L, XIONG Y, et al. Thermal design of ultra-large diameter in-orbit assembly infrared telescope sunshield[J]. Infrared and Laser Engineering, 2019, 48(12):202-207(in Chinese).
[80] 丁继锋, 高峰, 钟小平, 等. 在轨建造中的关键力学问题[J]. 中国科学:物理学力学天文学, 2019, 49(2):54-61. DING J F, GAO F, ZHONG X P, et al. The key mechanical problems of on-orbit construction[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2019, 49(2):54-61(in Chinese).
[81] 杨自鹏, 胡声超, 周佑君, 等. 多任务在轨服务模块化智能航天器技术研究[J]. 宇航总体技术, 2019, 3(4):15-20. YANG Z P, HU S C, ZHOU Y J, et al. Research on multi-mission intelligent vehicle on-orbit service technology[J]. Astronautical Systems Engineering Technology, 2019, 3(4):15-20(in Chinese).
[82] 李政阳, 云昕, 杨怡欣, 等. 在轨空间智能制造:分布式调度建模与优化[J]. 系统工程理论与实践, 2019, 39(3):705-724. LI Z Y, YUN X, YANG Y X, et al. In-space intelligent manufacturing:Distributed scheduling and optimization[J]. Systems Engineering-Theory & Practice, 2019, 39(3):705-724(in Chinese).
[83] 邓雅, 刘维惠, 李晓辉, 等. 一种空间机械臂无视觉在轨柔顺装配方法[J]. 空间控制技术与应用, 2018, 44(6):8-12. DENG Y, LIU W H, LI X H, et al. Space manipulator compliant on-orbit assembly without vision feedback[J]. Aerospace Control and Application, 2018, 44(6):8-12(in Chinese).
[84] 张玉良, 张佳朋, 王小丹, 等. 面向航天器在轨装配的数字孪生技术[J]. 导航与控制, 2018, 17(3):75-82. ZHANG Y L, ZHANG J P, WANG X D, et al. Digital twin technology for spacecraft on-orbit assembly[J]. Navigation and Control, 2018, 17(3):75-82(in Chinese).
[85] 沈晓凤, 曾令斌, 靳永强, 等. 在轨组装技术研究现状与发展趋势[J]. 载人航天, 2017, 23(2):228-235, 244. SHEN X F, ZENG L B, JIN Y Q, et al. Status and prospect of on-orbit assembly technology[J]. Manned Spaceflight, 2017, 23(2):228-235, 244(in Chinese).
[86] BELVIN W K, DOGGETT W R, WATSON J J, et al. In-space structural assembly:Applications and technology[C]//3rd AIAA Spacecraft Structures Conference. Reston:AIAA, 2016:2163.
[87] KOUVELIOTOU C, AGOL E, BATALHA N, et al. Enduring quests-daring visions (NASA astrophysics in the next three decades)[J]. arXiv Preprint, arXiv:1401.3741, 2014.
[88] HAMILL D, BOWMAN L, GILMAN D A, et al. High leverage technologies for in-space assembly of complex structures[C]//AIAA SPACE. Reston:AIAA, 2016:5397.
[89] BOYD I D, BUENCONSEJO R S, PISKORZ D, et al. On-orbit manufacturing and assembly of spacecraft:Opportunities and challenges:P-8335[R]. IDA Science & Technology Institute, 2017.
[90] 韩霞. 快速成型技术与应用[M]. 北京:机械工业出版社, 2016. HAN X. Rapid prototyping technology and application[M]. Beijing:China Machine Press, 2016(in Chinese).
[91] BELVIN W K, DOGGETT W R, WATSON J J, et al. In-space structural assembly:Applications and technology[C]//3rd AIAA Spacecraft Structures Conference. Reston:AIAA, 2016:2163.
[92] 杨正岩, 张佳奇, 高东岳, 等. 航空航天智能材料与智能结构研究进展[J]. 航空制造技术, 2017(17):36-48. YANG Z Y, ZHANG J Q, GAO D Y, et al. Advance of aerospace smart material and structure[J]. Aeronautical Manufacturing Technology, 2017(17):36-48(in Chinese).
[93] RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration & Biomimetics, 2015, 10(3):035008.
[94] LUO M, TAO W, CHEN F, et al. Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake[C]//IEEE Conference on Technologies for Practical Robot Applications. Piscataway:IEEE Press, 2014:1-6.
Outlines

/