Material Engineering and Mechanical Manufacturing

Effect of stress on precipitated phases in DD5 single crystal superalloy during stress rupture tests

  • LV Peisen ,
  • GAO Qiang ,
  • LI Changjin ,
  • LIU Lirong ,
  • ZHANG Mingjun ,
  • PENG Zhijiang
Expand
  • 1. School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
    2. Jinzhou Jietong Railroad Machinery Co. Ltd, Jinzhou 121019, China;
    3. AECC Shenyang Liming Aero-Engine Co. Ltd, Shenyang 110043, China

Received date: 2020-04-08

  Revised date: 2020-04-27

  Online published: 2020-06-12

Supported by

Funded by the Key Laboratory of Advanced High-temperature Structural Materials for National Defense Science and Technology (6142903180104)

Abstract

The precipitation of second phase particles at different sites of the specimen in DD5 single crystal superalloy during stress rupture tests is investigated using a scanning electron microscope and a transmission electron microscope. Effect of stress on the precipitation of the second phases and the crystal structure of the two precipitated phases are analysed. The results show that at 1 038℃/172 MPa, with the increase of the local tensile stress, the number of precipitated phases in both the interdendritic region and the dendrite arm increases obviously, whereas at 871℃/552 MPa, only a small number of granular precipitates are precipitated in the interdendritic region, and the number of precipitates increases with the increase of the tensile stress. The TEM analysis shows that the phase precipitated in the dendrite arm is mainly μ phase with a rhombohedral structure and that precipitated in the interdendritic region is mainly M23C6 phase.

Cite this article

LV Peisen , GAO Qiang , LI Changjin , LIU Lirong , ZHANG Mingjun , PENG Zhijiang . Effect of stress on precipitated phases in DD5 single crystal superalloy during stress rupture tests[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(6) : 424073 -424073 . DOI: 10.7527/S1000-6893.2020.24073

References

[1] ALEXANDRU P, GHEORGHE M, CRISTIAN P. The effect of heat treatment on the homogenization of CMSX-4 single-crystal Ni-based superalloy[J]. Transportation Research Procedia, 2018, 29:303-311.
[2] 蔡明, 巩亚东, 屈硕硕, 等. 镍基单晶高温合金磨削表面质量及亚表面微观组织试验[J]. 东北大学学报(自然科学版), 2019, 40(3):386-391. CAI M, GONG Y D, QU S S, et al. Experiment of grinding surface quality and subsurface microstructure for nickel-based single crystal superalloy[J]. Journal of Northeastern University (Natural Science), 2019, 40(3):386-391(in Chinese).
[3] 金涛, 周亦胄, 王新广, 等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10):1153-1162. JIN T, ZHOU Y Z, WANG X G, et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51(10):1153-1162(in Chinese).
[4] 史振学, 刘世忠. 新型单晶高温合金长期高温时效后的显微组织和高温拉伸性能[J]. 机械工程材料, 2020, 44(4):62-66. SHI Z X, LIU S Z. Microstructure and high temperature tensile properties of new single crystal superalloy after long term aging at high temperature[J]. Materials for Mechanical Engineering, 2020, 44(4):62-66(in Chinese).
[5] MEID C, EGGELER M, WATERMEYER P, et al. Stress-induced formation of TCP phases during high temperature low cycle fatigue loading of the single-crystal Ni-base superalloy ERBO/1[J]. Acta Materialia, 2019, 168:343-352.
[6] 向思思. 二代单晶高温合金中二次γ'沉淀相和碳化物的研究[D]. 北京:北京工业大学, 2017:20-23. XIANG S S. Study of secondary γ' precipitats and carbides of a second generation single crystal superalloy[D]. Beijing:Beijing University of Technology, 2017:20-23(in Chinese).
[7] 刘晨光, 赵云松, 张剑, 等. 应力时效对DD11单晶高温合金TCP相析出行为的影响[J]. 机械工程材料, 2018, 42(6):36-41. LIU C G, ZHAO Y S, ZHANG J, et al. Effects of stressed aging on TCP phase precipitation behaviour of DD11 single crystal superalloy[J]. Materials for Mechanical Engineering, 2018, 42(6):36-41(in Chinese).
[8] 谷怀鹏, 曹腊梅, 薛明, 等. 持久应力对DD10单晶高温合金1 100℃组织稳定性的影响[J]. 航空材料学报, 2014, 34(2):1-5. GU H P, CAO L M, XUE M, et al. Effect of stress on microstructural stability of DD10 single crystal superalloy[J]. Journal of Aeronautical Materials, 2014, 34(2):1-5(in Chinese).
[9] ACHARYA M V, FUCHS G E. The effect of stress on the microstructural stability of CMSX-10 single crystal Ni-base superalloys[J]. Scripta Materialia, 2006, 54(1):61-64.
[10] WLODEK S T. The structure of IN-100[J]. ASM Transactions Quaterly, 1964, 57(1):110-119.
[11] MIHALISIN J R, BIEBER C G, GRANT R T. Sigma-its occurrence, effect and control in nickel-base superalloys[J]. Transactions TMS-AIME, 1968, 242:2399-2414.
[12] PESSAH M, CARON P, KHAN T. Effect of μ phase on the mechanical properties of a nickel-base single crystal superalloy[C]//Superalloys 1992, 1992:567-576.
[13] YU Z H, LIU L, ZHAO X B, et al. Effect of solidification rate on MC-type carbide morphology in single crystal Ni-base superalloy AM3[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:1835-1840.
[14] 高强. 长期时效对DD5镍基单晶高温合金组织和力学性能的影响[D]. 沈阳:沈阳工业大学, 2019:36-38. GAO Q. Effect of long-term aging on microstructure and mechanical properties of DD5 nickel-based single crystal superalloy[D]. Shenyang:Shenyang University of Technology, 2019:36-38(in Chinese).
[15] 孙晶霞. 一种镍基单晶高温合金组织稳定性及持久性能的研究[D]. 沈阳:沈阳工业大学, 2019:23-25. SUN J X. Study on microstructural stability and stress-rupture properties of a nickel-based single crystal superalloy[D]. Shenyang:Shenyang University of Technology, 2019:23-25(in Chinese).
[16] 赵坦. 第二代定向柱晶高温合金DZ59研究[D]. 南京:南京理工大学, 2009:56-63. ZHAO T. Research on a second generation directi-onally solidified Ni base superalloy DZ59[D]. Nanjing:Nanjing University of Science and Technology, 2009:56-63(in Chinese).
[17] SEISER B, DRAUTZ R, PETTIFOR D G. TCP phase predictions in Ni-based superalloys:Structure maps revisited[J]. Acta Materialia, 2011, 59(2):749-763.
[18] 张姝, 田素贵, 梁福顺, 等. 镍基单晶合金在压缩蠕变期间的组织演化与有限元分析[J]. 材料热处理学报, 2011, 32(6):148-154. ZHANG S, TIAN S G, LIANG F S, et al. Microstructure evolution and analysis of single crystal nickel-based superalloy during compression creep[J]. Transactions of Materials and Heat Treatment, 2011, 32(6):148-154(in Chinese).
[19] PENG Z, POVSTUGAR I, MATUSZEWSKI K, et al. Effects of Ru on elemental partitioning and precipitation of topologically close-packed phases in Ni-base superalloys[J]. Scripta Materialia, 2015, 101:44-47.
[20] XIANG S S, MAO S C, SHEN Z J, et al. Site preference of metallic elements in M23C6 carbide in a Ni-based single crystal superalloy[J]. Materials & Design, 2017, 129:1-17.
Outlines

/