The opposing jet, an active flow control technology capable of drag and heat reduction, can be used in the design of hypersonic vehicles. The drag reduction characteristics of the opposing jet for the ball head, single cone, and double cone in typical missile shapes are numerically studied using CFD method, with the opposing jet generator fixedly connected to the missile body. The effects of the Mach number, jet pressure ratio and other parameters on the drag reduction effect of different objects are comparatively analyzed. The results show the existence of two modes of long and short penetration in the opposing jet flow field. The ball head has the best drag reduction effect with a small pressure ratio in the long penetration mode, while the single cone and the double-cone have better effects in the short penetration mode with large pressure ratios. An optimal pressure ratio exists to induce the best drag reduction effect. If the pressure ratio is too large, the drag reduction effect becomes worse such that the drag coefficient even increases instead of decreasing. The drag reduction effect of opposing jet is sensitive to control body selection. If the drag reduction characteristics of the opposing jet on the head were directly extended to the whole aircraft, the evaluation result would be too optimistic. Comprehensively considering the best drag reduction effect, the best pressure ratio, the mass flow rate, the required gas cylinder volume, and other influencing factors, we propose that the opposing jet should preferentially use sonic jet flow in engineering applications.
[1] 王保国, 黄伟光. 高超声速气动热力学[M]. 北京:科学出版社, 2014:171-179. WANG B G, HUANG W G. Hypersonic aerothermodynamics[M]. Beijing:Science Press, 2014:171-179(in Chinese).
[2] 王得强, 许晨豪, 蒋崇文, 等. 高超声速流动控制技术研究进展[J]. 飞航导弹, 2015(9):24-30. WANG D Q, XU C H, JIANG C W, et al. Advances in hypersonic flow control technology[J]. Aerodynamic Missile Journal, 2015(9):24-30(in Chinese).
[3] 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1):93-101. HONG Y J, LI Q, FANG J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):93-101(in Chinese).
[4] SUN X W, HUANG W, OU M, et al. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows[J]. Chinese Journal of Aeronautica, 2019, 32(4):771-784.
[5] WANG Z G, SUN X W, HUANG W, et al. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows:A survey[J]. Acta Astronautica, 2016, 129:95-110.
[6] 邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学学报, 2017, 34(4):485-495. DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica,2017, 35(4):485-495(in Chinese).
[7] FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2):337-368.
[8] ASO S, HAYASHI K, MIZOGUCHI M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow:AIAA-2002-0646[R]. Reston:AIAA, 2002.
[9] HAYASHI K, ASO S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet:AIAA-2003-4041[R]. Reston:AIAA, 2003.
[10] HAYASHI K, ASO S, TANI T. Numerical study of thermal protection system by opposing jet:AIAA-2005-0188[R]. Reston:AIAA, 2005.
[11] 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8):1552-1557. RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1552-1557(in Chinese).
[12] 周超英, 纪文英, 张兴伟, 等. 超声速钝体逆向喷流减阻的数值模拟研究[J]. 应用力学学报, 2012, 29(2):159-164. ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of bluff body in supersonic flow[J]. Chinese Journal of Applied Mechanics, 2012, 29(2):159-164(in Chinese).
[13] 周超英, 纪文英, 张兴伟, 等. 球头体逆向喷流减阻的数值模拟研究[J]. 工程力学, 2013, 30(1):441-447. ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of a spherical body[J]. Engineering Mechanics, 2013, 30(1):441-447(in Chinese).
[14] ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Journal of Aerospace Engineering, 2014, 228(2):163-177.
[15] 何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究[J]. 力学学报, 2006, 38(4):438-445. HE K, CHEN J Q, DONG W Z. Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):438-445(in Chinese).
[16] 田婷, 阎超. 超声速场中的反向喷流数值模拟[J]. 北京航空航天大学学报, 2008, 34(1):9-12. TIAN T, YAN C. Numerical simulation on opposing jet in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1):9-12(in Chinese).
[17] LU H B, LIU W Q. Numerical investigation on properties of attack angle for an opposing jet thermal protection system[J]. Chinese Physics B, 2012, 21(8):1-6.
[18] HUANG W, LI Y. Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavity concept for hypersonic vehicles[J]. Aerospace Science and Technology, 2015, 42:407-414.
[19] 王立强, 钱勤建. 钝体逆向喷流减阻降温数值仿真研究[J]. 航空科学技术, 2019, 30(5):75-81. WANG L Q, QIAN Q J. Numerical simulation investigation on drag and heat-transfer reduction of blunt body with counter-flow jet[J]. Aeronautical Science & Technology, 2019, 30(5):75-81(in Chinese).
[20] 王立强, 钱勤建. 钝体逆向喷流减阻降温数值模拟[J]. 弹箭与制导学报, 2019, 39(1):55-59. WANG L Q, QIAN Q J. Numerical investigation on counter-flow jets on drag and heat-transfer reduction[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(1):55-59(in Chinese).
[21] DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Science, 2018, 61(7):1056-7071.
[22] DENG F, XIE F, QIN N, et al. Drag reduction investigation for hypersonic lifting-body vehicles with aerospike and long penetration mode counterflowing jet[J]. Aerospace Science and Technology, 2018, 76:361-373.
[23] DASO E, PRITCHETT V E, WANG T S, et al. Dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets[J]. AIAA Journal, 2009, 47(6):1313-1326.
[24] ATIQA B, MAQSOOD A, SHERBAZ S, et al. Drag reduction of supersonic blunt bodies using opposing jet and nozzle geometric variations[J]. Aerospace Science and Technology, 2017, 69:24-256.
[25] 赵承庆, 姜毅. 气体射流动力学[M]. 北京:北京理工大学出版社, 1998:134-143. ZHAO C Q, JIANG Y. Gas jet dynamics[M]. Beijing:Beijing Institute of Technology Press, 1998:134-143(in Chinese).