Material Engineering and Mechanical Manufacturing

Thin film temperature sensor for spacecraft: development and performance

  • CUI Yunxian ,
  • GAO Fulai ,
  • ZHU Xi ,
  • SU Xinming ,
  • YIN Junwei
Expand
  • 1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China;
    2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China

Received date: 2020-04-16

  Revised date: 2020-04-21

  Online published: 2020-05-28

Supported by

National Natural Science Foundation of China (51905071, 51575074); Natural Science Foundation of Liaoning Province (2019-BS-043)

Abstract

At hypersonic speeds, the instantaneous temperature of spacecraft can reach higher than 1 600 ℃. To ensure the reliability and safety of the aircraft, it is critical to accurately measure the surface temperature of the thermal protection system in real time. In view of the technical problems of real-time temperature measurement in high temperature environments, and combining magnetron sputtering technology and ceramic sintering technology, this paper proposes a small thin film temperature sensor structure which integrates the lead wire and the sensor substrate. High temperature insulation of the ceramic insulating substrate of the sensor is tested by high temperature verification furnace. The main structural materials of the sensor are screened by various microscopic morphology characterization methods to obtain the best material combination needed for the preparation of the thin film temperature sensor. The static calibration and comprehensive performance test of the thin film temperature sensor at high temperature are conducted. The results show that the sensitivity and repeatability of the sensor are basically consistent with the standard thermocouple, with the high temperature measurement error no larger than 4‰ when the actual ambient temperature is lower than 1 500 ℃. Additionally, it can continuously and accurately measure temperature for more than 6 h at 1 200 ℃, and the upper limit of the temperature measurement is up to 1 800 ℃, verifying the feasibility and practicability of the sensor in measuring the surface temperature in high temperature environments, thereby providing scientific basis for spacecraft surface temperature measurement and thermal protection system optimization.

Cite this article

CUI Yunxian , GAO Fulai , ZHU Xi , SU Xinming , YIN Junwei . Thin film temperature sensor for spacecraft: development and performance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020 , 41(12) : 424097 -424097 . DOI: 10.7527/S1000-6893.2020.24097

References

[1] 雍恩米, 刘深深, 程艳青, 等. 面向弹道优化的高超声速再入飞行器模态稳定性分析[J]. 航空学报, 2019, 40(7):122666. YONG E M, LIU S S, CHENG Y Q, et al. Analysis of modal stability of hypersonic reentry vehicle facing ballistic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122666(in Chinese).
[2] 邹学锋, 郭定文, 潘凯. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报, 2018, 39(12):222326. ZOU X F, GUO D W, PAN K. Combined strength test technology for hypersonic vehicle structures under integrated load[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):222326(in Chinese).
[3] NIU Q L, YUAN Z C, CHEN B, et al. Infrared radiation characteristics of a hypersonic vehicle under time-varying angles of attack[J]. Chinese Journal of Aeronautics, 2019, 32(4):861-874.
[4] 李振伟, 董景龙, 刘畅, 等. 航天器表面瞬态测温用薄膜热电偶的研制[J]. 航天器环境工程, 2017, 33(4):393-397. LI Z W, DONG J L, LIU C, et al. Development of thin film thermocouple for transient temperature measurement on spacecraft surface[J]. Spacecraft Environment Engineering, 2017, 33(4):393-397(in Chinese).
[5] 邓元, 张义政, 王瑶, 等. 柔性热电薄膜器件的研究进展[J]. 航空学报, 2014, 35(10):2733-2746. DENG Y, ZHANG Y Z, WANG Y, et al. Advances in flexible thermoelectric thin film devices[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2733-2746(in Chinese).
[6] 侯玉柱, 郑京良, 董威. 高超声速飞行器瞬态热试验[J]. 航空动力学报, 2010, 25(2):343-347. HOU Y Z, ZHENG J L, DONG W. Hypersonic vehicle transient thermal test[J]. Journal of Aerospace Power, 2010, 25(2):343-347(in Chinese).
[7] 安万庆, 柳晓宁, 赵翔宇, 等. 钨铼热电偶在航天器真空热试验中的应用[J]. 航天器环境工程, 2016, 33(2):189-193. AN W Q, LIU X N, ZHAO X Y, et al. Application of tungsten coupling thermocouple in vacuum thermal test of spacecraft[J]. Spacecraft Environment Engineering, 2016, 33(2):189-193(in Chinese).
[8] DENG J J, WANG W H, HUI L U, et al. A through-hole lead connection method for thin-film thermocouples on turbine blades[J]. Sensors, 2019, 19(5):1155.
[9] ALIFANOV O M, CHEREPANOV V V, MORZHUKHINA A V. Investigation of the formation mechanism and the magnitude of systematic error of thermocouple measurements in high-temperature heat shield aerospace materials[J]. Journal of Engineering Physics and Thermophysics, 2018, 91(3):574-584.
[10] 薛光辉, 柴敬轩. 热电偶传感器温控系统误差研究[J]. 中国测试, 2019, 44(9):100-104. XUE G H, CHAI J X. Error study on temperature control system of thermocouple sensor[J]. China Measurement & Test, 2019, 44(9):100-104(in Chinese).
[11] 崔云先. 瞬态切削用NiCr/NiSi薄膜热电偶测温铣刀研究[D]. 大连:大连理工大学, 2011:33-37. CUI Y X. Research on NiCr/NiSi thin film thermocouple milling temperature measurement tool for transient cutting[D]. Dalian:Dalian University of Technology, 2011:33-37(in Chinese).
[12] 傅滟. 等静压成型99氧化铝陶瓷及其抗折强度的Weibull分析[D]. 济南:济南大学, 2014:22-36. FU Y. Weibull analysis of isostatic pressing forming 99 aluminum oxide ceramics and its refractory strength[D]. Jinan:Jinan University, 2014:22-36(in Chinese).
[13] KAI Z, FENG L I, TAO Z, et al. Probe design for measuring total temperature of combustor outlet based on water cooling[J]. Journal of Aerospace Power, 2018, 33(9):45-53.
[14] CHEN Y, JIANG H, ZHAO W, et al. Fabrication and calibration of Pt-10%Rh/Pt thin film thermocouples[J]. Measurement, 2014, 48:248-251.
[15] 崔云先, 张子超, 丁万昱, 等. NiCr高温薄膜电阻应变计制备及耐高温性能研究[J]. 仪器仪表学报, 2016, 37(7):1548-1555. CUI Y X, ZHANG Z C, DING W Y, et al. Preparation and high temperature resistance of NiCr high temperature thin film strain gauge[J]. Chinese Journal of Scientific Instrument, 2016, 37(7):1548-1555(in Chinese).
[16] 王明娥, 马国佳, 董闯.立方氮化硼薄膜的制备及研究[J]. 真空科学与技术, 2014, 33(9):950-955. WANG M E, MA G J, DONG C. Preparation and study of cubic boron nitride film[J]. Chinese Journal of Vacuum Science and Technology, 2014, 33(9):950-955.
[17] GEHLOT R, TRIPATHI B. Thermal analysis of holes created on ceramic coating for diesel engine piston[J]. Case Studies in Thermal Engineering, 2016, 8:291-299.
[18] 李卫彬, 秦晓旭. 优化镍基高温合金X-750热处理工艺参数的非线性超声无损评估方法[J]. 航空学报, 2015, 36(11):3742-3750. LI W B, QIN X X.Optimization of heat treatment process parameter for nickel-base superalloy X-750 by nonlinear ultrasonic non-destructive evaluation method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3742-3750(in Chinese).
[19] 崔云先, 胡晓勇, 薛帅毅, 等. 高速动车组轴温测量用特种结构薄膜传感器的研制[J]. 中国机械工程, 2018, 29(1):63-69. CUI Y X, HU X Y, XUE S Y, et al. Development of special structure thin film sensor for axle temperature measurement of high speed EMU[J]. China Mechanical Engineering, 2018, 29(1):63-69(in Chinese).
[20] RAHDAN A, BOLANDI H, ABEDI M. Design of on-board calibration methods for a digital sun sensor based on Levenberg-Marquardt algorithm and Kalman filters[J]. Chinese Journal of Aeronautics, 2020,3(1):339-351.
[21] KOLBL N, MARSCHALL I, HARMUTH H. High-temperature investigation of mould slag crystallization by single and double hot thermocouple techniques[J]. Journal of Iron and Steel Research International, 2019, 26:345-354.
[22] NENAROKOMOV A V, ALIFANOV O M, BUDNIK S A, et al. Research and development of heat flux sensor for ablative thermal protection of spacecrafts[J]. International Journal of Heat and Mass Transfer, 2016, 97(2):990-1000.
[23] HOU B, HE Y T, CUI R H, et al. Crack monitoring method based on Cu coating sensor and electrical potential technique for metal structure[J]. Chinese Journal of Aeronautics, 2015, 28(3):932-938.
Outlines

/