Review

Research status of planetary surface mobile exploration robots: Review

  • ZHANG Yuanxun ,
  • HUANG Jing ,
  • HAN Liangliang
Expand
  • 1. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China;
    2. Center of Space Exploration of Ministry of Education, Chongqing University, Chongqing 400044, China;
    3. Institute of Aerospace System Engineering, Shanghai, Shanghai 201109, China

Received date: 2020-02-28

  Revised date: 2020-03-16

  Online published: 2020-05-28

Supported by

National Natural Science Foundation of China Youth Fund (51705045); Civil Aerospace Technology Advance Research Project (D030103); Manned Space Advance Research Project (030601)

Abstract

Planetary surface mobile exploration robots are multi-disciplinary, high-tech products, used in unstructured environments of planet surface exploration. These robots can effectively reduce the intensity of human work, protect human safety and replace humans to complete scientific research and exploration work in harsh environment with substantial economic and social benefits. This study conducts the statistics of the launched detectors, systematically sorting out the technical parameters, structure, and mechanism composition of the probe robots successfully landing on the moon and Mars. The technological status of space robots in different countries are compared comprehensively. Based on the present foreign and domestic research status and achievements, this paper focuses on the research of the mobile system of planetary surface mobile exploration robots. These robots have been divided into four structural types in terms of their motion forms, including wheeled, legged, tracked, and others. The research progress, technical parameters, structure and mechanism forms, and motion forms of each type of robots are reviewed systematically with successful cases of planetary surface mobile exploration robots. Finally, the future development trend of planetary surface mobile exploration robots is prospected based on their tasks and development directions.

Cite this article

ZHANG Yuanxun , HUANG Jing , HAN Liangliang . Research status of planetary surface mobile exploration robots: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(1) : 523909 -523909 . DOI: 10.7527/S1000-6893.2020.23909

References

[1] YANG G, STEVE C. Review on space robotics:Toward top-level science through space exploration[J]. Science Robot, 2017, 2(7):5074.
[2] TOMASZ R. Obstacle avoidance in space robotics:Review of major challenges and proposed solutions[J]. Progress in Aerospace Sciences, 2018, 101:31-48.
[3] IJAR M F, MAURCIO N P. The state-of-the-art in space robotics[J]. Journal of Physics:Conference Series, 2015, 641.
[4] SHIN I N, SACHIKO W. Lunar surface exploration using mobile robots[J]. Central European Journal of Engineering, 2012, 2(2):156-163.
[5] 刘方湖, 陈建平, 马培荪, 等. 行星探测机器人的研究现状和发展趋势[J]. 机器人, 2002, 24(3):268-275. LIU F H, CHEN J P, MA P S, et al. Research status and development trend towards planetary exploration robots[J]. Robot, 2002, 24(3):268-275(in Chinese).
[6] 贺波勇, 李海阳. 载人登月着陆器奔月窗口搜索方法[J]. 航空学报, 2017, 38(4):268-276. HE B Y, LI H Y. Lunar module trans-lunar window searching approach for manned lunar mission[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):268-276(in Chinese).
[7] 卢波. 世界月球探测的发展回顾与展望[J]. 国际太空, 2019(1):12-18. LU B. Review and prospect of the development of world lunar exploration[J]. Space International, 2019(1):12-18(in Chinese).
[8] 岳富占, 崔平远, 崔祜涛, 等. 月球巡视探测器自主定向算法研究[J]. 航空学报, 2006, 27(3):500-504. YUE F Z, CUI P Y, CUI H T, et al. Algorithm research on lunar rover autonomous heading detection[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):500-504(in Chinese).
[9] JAMES J Z, DAVID B M, JEFFREY M W, et al. Exploration rover concepts and development challenges[C]//First AIAA Space Exploration Conference. Reston:AIAA, 2005:1-23.
[10] 张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学(技术科学), 2014, 44(5):483-491. ZHANG Y H, XIAO J, ZHANG X W, et al. Design and implementation of Chang'E-3 rover location system[J]. Scientia Slnica Technologica, 2014, 44(5):483-491(in Chinese).
[11] 李爽, 江秀强. 火星进入减速器技术综述与展望[J].航空学报, 2015, 36(2):422-440. LI S, JIANG X Q. Review and prospect of decelerator technologies for Mars entry[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):422-440(in Chinese).
[12] ROBERT B. Robots for space exploration[J]. Industrial Robot:An International Journal, 2012, 39(4):323-328.
[13] CAFFREY R, UDOMKESMALEE G, HAYATI S, et al. Initiating the 2002 Mars science laboratory (MSL) focused technology program[C]//IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 2004:638-652.
[14] KEITH N, STEVEN H. Mars science laboratory rover actuator thermal design[R]. Washington, D.C.:Jet Propulsion Laboratory/California Institute of Technology, 2008.
[15] MAX B, MARK W M, DANIEL H. Autonomy for Mars rovers:Past, present, and future[J]. Computer, 2008, 41(12):44-50.
[16] LI R X, KAICHANG D, LARRY H, et al. Rover localization and landing-site mapping technology for the 2003 Mars exploration rover mission[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(1):77-90.
[17] YOSHIAKI K, ALBERTO E, MARK M, et al. Path planning challenges for planetary robots[J]. Journal of the Physical Society of Japan, 2008, 57(8):2745-2750.
[18] MAKI J N, THIESSEN D, POURANGI A, et al. The Mars science laboratory (MSL) hazard avoidance cameras (Hazcams)[C]//Lunar and Planetary Science Conference, 2012.
[19] MAKI J, THIESSEN D, POURANGI A, et al. The Mars science laboratory engineering cameras[J]. Space Science Reviews, 2012, 170(1-4):77-93.
[20] THIESSEN D, POURANGI A, KOBZEFF P, et al. The Mars science laboratory (MSL) navigation cameras (navcams)[C]//Lunar and Planetary Science Conference, 2011.
[21] LOUISE J. Mars science laboratory sample acquisition, sample processing and handling:Subsystem design and test challenges[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Washington, D.C.:NASA Kennedy Space Center, 2010:233-247.
[22] JEAN P F, THIERRY C, BILL J N. Thermoelectrics:From space power systems to terrestrial waste heat recovery applications[R]. Washington, D.C.:Jet Propulsion Laboratory/California Institute of Technology, 2011.
[23] ANDERSON D J, SANKOVIC J, WILT D, et al. NASA's advanced radioisotope power conversion technology development status[C]//Aerospace Conference. Piscataway:IEEE Press, 2007:2934-2953.
[24] 王耀兵. 空间机器人[M]. 北京:北京理工大学出版社, 2018:408-410. WANG Y B. Space robots[M]. Beijing:Beijing Institute of Technology Press, 2018:408-410(in Chinese).
[25] MICHEL M. Robots for lunar exploration:Present and future[J]. Advance Space Research, 1999, 23(11):1894-1855.
[26] 欧阳自远, 李春来, 邹永廖, 等. 深空探测进展与开展我国深空探测的思考[J]. 国际太空, 2003(2):2-6. OUYANG Z Y, LI C L, ZOU Y L, et al. Progress in deep space exploration and thoughts on deep space exploration in China[J]. Space International, 2003(2):2-6(in Chinese).
[27] 胡群芳, 陈永杰. 中国掀起月球车研制热[J]. 中国航天, 2004(5):9-10. HU Q F, CHEN Y J. Universities and institutes attracted by lunar rover project[J]. Aerospace China, 2004(5):9-10(in Chinese).
[28] NANDY G C, XU Y S. Dynamic model of a gyroscopic wheel[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1998:2683-2688.
[29] 邱雪松. 八轮扭杆摇臂式月球车可展开移动系统研究[D]. 哈尔滨:哈尔滨工业大学, 2007. QIU X S. Research on deployable locomotion system for eight-wheel torsion-bar-rocker lunar rover[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).
[30] KOSHIYAMA A, YAMAFUJI K. Design and control of an all-direction steering type mobile robot[J]. The International Journal of Robotics Research, 1993, 12(5):411-419.
[31] 战强, 李伟. 球形移动机器人的研究进展与发展趋势[J]. 机械工程学报, 2019, 55(9):1-17. ZHAN Q, LI W. Research progress and development trend of spherical mobile robots[J]. Journal of Mechanical Engineering, 2019, 55(9):1-17(in Chinese).
[32] MUKHERJEE R, MINOR M A, PUKRUSHPAN J T. Simple motion planning strategies for spherobot:A spherical mobile robot[C]//IEEE Conference on Decision and Control. Piscataway:IEEE Press, 1999:2132-2137.
[33] 毕贞法, 邓宗全. 两轮并列式月球车的性能及其稳定性分析[J]. 哈尔滨工程大学学报, 2006, 27(4):560-564. BI Z F, DENG Z Q. Performance and stability analysis of lunar rover with two parallel wheels[J]. Journal of Harbin Engineering University, 2006, 27(4):560-564(in Chinese).
[34] GRASSER F, DARRIGO A, COLOMBI S, et al. Joe:A mobile, inverted pendulum[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1):107-114.
[35] DAVID P A. nBot balancing robot[EB/OL]. (2013-09-14)[2020-02-19]. http://www.geology.smu.edu/dpa-www/robo/nbot/.
[36] 颖慧说科技. NASA突破! 将向月球发射洞穴潜水机器人,为人类寻找新的家园[EB/OL]. (2020-04-05)[2020-05-03]. https://www.sohu.com/a/385537180_1206-09310. Speaking Technology by Yinghui. NASA breakthrough! Will launch cave diving robots to the moon to find new homes for humans[EB/OL]. (2020-04-05)[2020-05-03]. https://www.sohu.com/a/385537180_120609310(in Chinese).
[37] NESNAS I A D, MATTHEWS J B, ABAD M P, et al. Axel and DuAxel rovers for the sustainable exploration of extreme terrains[J]. Journal of Field Robotics, 2012, 29(4):663-685.
[38] 陶建国. 串联多关节悬架六轮月球车移动系统及其关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2009. TAO J G. Research on six-wheeled rover mobile system with series multi-articulated suspension and its key technology[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese).
[39] ROGER B, JAMES A, KARL M, et al. A stewart platform lunar rover[C]//Proceedings of the ASCE Specialty Conference held in Albuquerque, 1994:175-183.
[40] ROLLINS E, LUNTZ J, FOESSEL A, et al. Nomad:A demonstration of the transforming chassis[C]//Proceedings of IEEE international Conference on Robotics and Automation. Piscataway:IEEE Press, 1998:611-617.
[41] CABROL N A, CHONG-DIAZ G, STOKER C R, et al. Nomad rover field experiment, Atacama Desert, Chile 1. science results overview[J]. Journal of Geophysical Research, 2001, 106(E4):7785-7806.
[42] MARTIN J S, SEBASTIAN G B, KRISTIN B, et al. Towards autonomous planetary exploration[J]. Journal of Intelligent & Robotic Systems, 2019, 93(3):461-494.
[43] BEKKER M G. The development of a moon rover[J]. Journal of the British Interplanetary Society, 1985, 38(4):537-543.
[44] KLARER P. A multitasking behavioral control system for the robotic all terrain lunar exploration rover(RATLER)[C]//Proceedings of Me International Conference on Intelligent Robotics in Field, 1994:717-723.
[45] TUNSTEL E. Evolution of autonomous self-righting behaviors for articulated nanorovers[C]//Proceedings of the 5th International Symposium on Artificial Intelligence. Robotics and Automation in Space, 1999:341-346.
[46] 高海波, 邓宗全, 胡明, 等. 行星轮式月球车移动系统的关键技术[J]. 机械工程学报, 2005, 41(12):156-161. GAO H B, DENG Z Q, HU M, et al. Key technology of moving system of lunar rover with planetary wheel[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12):156-161(in Chinese).
[47] 于文泽. 变质心四轮月球车的设计及其移动性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. YU W Z. Design of lunar rover with V.C.M and research on performance of mobility[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese).
[48] 马传帅, 文桂林, 钟志华, 等. 主动摆臂四轮菱形月球车移动系统越障性能分析与优化[J]. 中国机械工程, 2011, 22(5):550-556. MA C S, WEN G L, ZHONG Z H, et al. Analysis and optimization of climbing-capability of four-wheel-rhombus-arranged mobility system[J]. China Mechanical Engineering, 2011, 22(5):550-556(in Chinese).
[49] 马传帅. 主动摆臂四轮菱形月球车移动系统动力学建模与移动性能研究[D]. 长沙:湖南大学, 2010. MA C S. The study of dynamical modeling and mobility performance on the four-wheel-rhombus-arranged (FWRA) mobility system[D]. Changsha:Hunan University, 2010(in Chinese).
[50] TAKASHI K, KURODA Y, KUNⅡ Y, et al. Small, light-weight rover "Micro5" for lunar exploration[J]. Acta Astronautica, 2003, 52(1):447-453.
[51] 刘方湖, 马培荪, 曹志奎, 等. 五轮铰接式月球机器人的运动学建模[J]. 机器人, 2001, 23(6):481-485, 492. LIU F H, MA P S, CAO Z K, et al. Kinematic modeling of a five-wheel articulated lunar robot[J]. Robot, 2001, 23(6):481-485,492(in Chinese).
[52] 刘方湖, 陈建平, 马培荪, 等. 五轮月球机器人及其特性分析[J]. 机械设计, 2001, 18(5):15-18, 40. LIU F H, CHEN J P, MA P S, et al. Five-wheel lunar robot and its characteristics analysis[J]. Machine Design, 2001, 18(5):15-18, 40(in Chinese).
[53] HAYATI S, VOLPE R, BACKES P, et al. The rocky 7 rover:A mars science craft prototype[C]//Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1997:2458-2460.
[54] EDWARD T, TERRY H, HRAND A, et al. FIDO rover field trials as rehearsal for the NASA 2003 mars exploration rovers mission[C]//Proccedings ot the 5th Biannual World Automation Congress.Piscataway:IEEE Press, 2002:320-327.
[55] 侯绪研. 六轮摇臂式月球车运动协调控制模式研究[D]. 哈尔滨:哈尔滨工业大学, 2009. HOU X Y. Research on coordinated motion control mode for six-wheeled rocker lunare rover[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese).
[56] KEMURDJIAN A, GROMOV V, MISHKINYUK V, et al. Small marsokhod configuration[C]//Proceedings of the 1992 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1992:165-168.
[57] 陶建国, 邓宗全, 高海波, 等. 六圆柱-圆锥轮式月球车的设计[J]. 哈尔滨工业大学报, 2006, 38(1):4-7. TAO J G, DENG Z Q, GAO H B, et al. Design of a lunar rover with six cylinder-conical wheels[J]. Journal of Harbin Institute of Technology, 2006, 38(1):4-7(in Chinese).
[58] ROLAND S, PIERRE L, THOMAS E, et al. Innovative design for wheeled locomotion in rough terrain[J]. Robotics and Autonomous Systems, 2002, 40(2-3):151-162.
[59] 杨艳春. 虚拟环境下月球车仿真试验系统及其若干关键技术研究[D]. 上海:上海交通大学, 2009. YANG Y C. A virtual environment for lunar rover's simulation and study of its key technologies[D]. Shanghai:Shanghai Jiao Tong University, 2009(in Chinese).
[60] 李春明, 苏波, 江磊, 等. 面向行驶安全性的月球车行走系统FDTM总体设计[J]. 机器人技术与应用, 2008(3):10-13. LI C M, SU B, JIANG L, et al. The overall design of the lunar rover walking system FDTM for driving safety[J]. Robot Technique and Application, 2008(3):10-13(in Chinese).
[61] THOMAS T, AMBROISE K, ROLAND S. Comprehensive locomotion performance evaluation of all-terrain robots[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2006:4260-4265.
[62] 陈百超. 月球车新型移动系统设计[D]. 长春:吉林大学, 2009. CHEN B C. Design of a new locomotion system for lunar rover[D]. Changchun:Jilin University, 2009(in Chinese).
[63] 尚建忠, 罗自荣, 张新访, 等. 双曲柄滑块联动月球车设计及样机研制[J]. 中国机械工程, 2007, 18(3):348-351. SHANG J Z, LUO Z R, ZHANG X F, et al. Design and prototype development of a lunar rover with two-crank-slider suspension[J]. China Mechanical Engineering, 2007, 18(3):348-351(in Chinese).
[64] 邵毅敏, 谢更新, 钟志华, 等. 可重复、可重构载人月球车:中国, ZL201610512220.1[P]. 2016-11-09. SHAO Y M, XIE G X, ZHONG Z H, et al. Repeatable and reconfigurable manned lunar rover:China, ZL201610-512220.1[P]. 2016-11-09(in Chinese).
[65] 高海波, 张鹏, 邓宗全, 等. 新型八轮月球车悬架的研制[J]. 机械工程学报, 2008, 44(7):85-92. GAO H B, ZHANG P, DENG Z Q, et al. Development of suspension frame of new eight-wheel lunar rover[J]. Chinese Journal of Mechanical Engineering, 2008, 44(7):85-92(in Chinese).
[66] 邓宗全, 邱雪松, 胡明, 等. 八轮扭杆摇臂式可展开月球车振动分析[J]. 机器人, 2007, 29(6):534-539, 545. DENG Z Q, QIU X S, HU M, et al. Vibration analysis on the deployable eight-wheel lunar rover with the torsion-bar and rocker structure[J]. Robot, 2007, 29(6):534-539, 545(in Chinese).
[67] 禹鑫燚, 高海波, 邓宗全. 崎岖地形中关节式月球车姿态估计数值求解方法[J]. 航空学报, 2009, 30(8):1521-1530. YU X Y, GAO H B, DENG Z Q. Numerical Solving method of kinematic observers estimation of articulated rovers on rough terrain[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1521-1530(in Chinese).
[68] BARES J, WHITTAKER W L. Configuration of autonomous walker for extreme terrain[J]. The International Journal of Robotics Research, 1993, 12(6):535-550.
[69] KROTKOV E, SIMMONS R. Planning and control for autonomous walking with the ambler planetary rover[J]. The International Journal of Robotics Research, 1996, 15(2):155-180.
[70] 刘方湖. 管道形轮腿式月球探测机器人及其运动特性的研究[D]. 上海:上海交通大学, 2002. LIU F H. Research on pipe-shaped wheel-legged lunar exploration robot and its motion characteristics[D]. Shanghai:Shanghai Jiao Tong University, 2002(in Chinese).
[71] GOERNER M, WIMBOECK T, HIRZINGER G. The DLR Crawler:Evaluation of gaits and control of an actively compliant six-legged walking robot[J]. Industrial Robot:An International Journal, 2009, 36(4):344-351.
[72] 韩亮亮, 陈萌, 张崇峰, 等. 月面服务机器人研究进展及发展设想[J]. 载人航天, 2018, 24(3):313-320. HAN L L, CHEN M, ZAHNG C F, et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight, 2018, 24(3):313-320(in Chinese).
[73] BELTER D, SKRZYPCZYNSKI P. Rough terrain mapping and classification for foothold selection in a walking robot[J]. Journal of Field Robotics, 2011, 28(4):497-528.
[74] ROENNAU A, HEPPNER G, PFOTZER L, et al. Lauron V:Optimized leg configuration for the design of a bio-inspired walking robot[C]//Proceeding of International Conference on Climbing and Walking Robots, 2013:563-570.
[75] 赵杰, 张赫, 刘玉斌, 等. 六足机器人HITCR-I的研制及步行实验[J]. 华南理工大学学报(自然科学版), 2012, 40(12):17-23. ZHAO J, ZHANG H, LIU Y B, et al. Development and walking experiment of hexapod robot HITCR-I[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(12):17-23(in Chinese).
[76] ZHANG H, LIU Y B, ZHAO J, et al. Development of a bionic hexapod robot for walking on unstructured terrain[J]. Journal of Bionic Engineering, 2014, 11(2):176-187.
[77] 刘宇飞. 面向非预知地形的六足机器人足力优化及滑移抑制研究[D]. 哈尔滨:哈尔滨工业大学, 2019. LIU Y F. Research on foot force optimization and slippage suppression of hexpod robot under unknown terrain[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese).
[78] PAN Y, GAO F, QI C K, et al. Human-tracking strategies for a six-legged rescue robot based on distance and view[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2):219-230.
[79] 李舜酩, 廖庆斌. 星球探测车的研发状况综述[J]. 航空制造技术, 2006(11):68-71. LI S M, LIAO Q B. Overview of the research and development status of the planetary exploration vehicle[J]. Aeronautical Manufacturing Technology, 2006(11):68-71(in Chinese).
[80] KEMURDJIAN A L, KHAKHANOV Y A. Planet rovers and space machinery:Simulators for terrestrial testing[C]//6th International Conference and Exposition on Engineering, Construction, and Operations in Space. Piscataway:IEEE Press, 1998:102-110.
[81] KEMURDJIAN A L. Planet rover as all object of the engineering design work[C]//Proceeding of the 1998 IEEE International Conference on Robotics& Automation. Piscataway:IEEE Press, 1998:140-145.
[82] 朴春日, 颜国正, 王志武, 等. 一种履带式机器人设计及其越障分析[J]. 现代制造工程, 2013(3):24-27. PU C R, YAN G Z, WANG Z W, et al. Design of a tracked robot and analysis of its obstacle-climbing[J]. Modern Manufacturing Engineering, 2013(3):24-27(in Chinese).
[83] SACHIKO W, HITOSHI S, SHIN I N. Design and mobility evaluation of tracked lunar vehicle[J]. Journal of Terramechanics, 2009, 46:105-114.
[84] 李允旺, 葛世荣, 朱华, 等. 四履带双摆臂机器人越障机理及越障能力[J]. 机器人, 2010, 32(2):157-165. LI Y W, GE S R, ZHU H, et al. Obstacle-surmounting mechanism and capability of four-track robot with two swing arms[J]. Robot, 2010, 32(2):157-165(in Chinese).
[85] KEIJI N, SEIGA K, YOSHITO O, et al. Redesign of rescue mobile robot Quince[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics. Piscataway:IEEE Press, 2011:13-18.
[86] 王田苗, 邹丹, 陈殿生. 可重构履带机器人的机构设计与控制方法实现[J]. 北京航空航天大学学报, 2005, 31(7):705-708. WANG T M, ZOU D, CHEN D S. Mechanism design and control method of reconfigurable tracked robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(7):705-708(in Chinese).
[87] 庄皓岚. 特种环境移动机器人控制系统与越障研究[D]. 上海:上海交通大学, 2013. ZHUANG H L. Control system of specialized moble robot and obstacle performance study[D]. Shanghai:Shanghai Jiao Tong University, 2013(in Chinese).
[88] KAWAKAMI A, TORⅡ A, MOTOMURA K, et al. SMC rover:Planetary rover with transformable wheels[C]//8th International Symposium on Experimental Robotics, 2003:498-506.
[89] KAWAKAMI A, TORⅡ A, HIROSE S. Design of SMC rover:Development and basic experiments of arm equipped single wheel rover[C]//IEEE Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2001:96-101.
[90] WHEELER D W, VYTAS S, DAVID M, et al. Development and field testing of the footfall planning system for the ATHLETE robots[J]. Journal of Field Robotics, 2012, 29(3):483-505.
[91] HARRISON D A, AMBROSE R, BLUETHMANN B, et al. Next generation rover for lunar exploration[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2007:1196-1201.
[92] SREENIVASAN S V, WILCOX B H. Stability and traction control of an actively actuated micro-rover[J]. Journal of Robotic Systems, 1994, 11(6):487-502.
[93] 刘方湖, 马培荪, 陈建平. 管道形轮腿式月球探测机器人[J]. 机械工程学报, 2002, 38(11):42-48. LIU F H, MA P S, CHEN J P, et al. Pipeline-shaped wheel-legged lunar exploration robot[J]. Chinese Journal of Mechanical Engineering, 2002, 38(11):42-48(in Chinese).
[94] 李聪. 模块化可重构六支链轮腿式月面机器人设计与分析[D]. 重庆:重庆大学, 2019. LI C. Design and analysis of modular reconfigurable six branched wheel-legged lunar robot[D]. Chongqing:Chongqing University, 2019(in Chinese).
[95] FIORINI P, COSMA C, CONFENTE M. Localization and sensing for hopping robots[J]. Autonomous Robots, 2005, 18(18):185-200.
[96] BURKICK J, FIORINI P. Minimalist jumping robots for celestial exploration[J]. International Journal of Robotics Research, 2003, 22(7):653-666.
[97] 莫小娟, 葛文杰, 赵东来, 等. 微小型跳跃机器人研究现状综述[J]. 机械工程学报, 2019, 55(15):109-123. MO X J, GE W J, ZHAO D L, et al. Review:Research status of miniature jumping robot[J]. Journal of Mechanical Engineering, 2019, 55(15):109-123(in Chinese).
[98] ROLF A L, DIMI A, DAVID W. Control strategies for a multi-legged hopping robot[C]//IEEE/RSJ International Conference on Intelligent Robot and Systems. Piscataway:IEEE Press, 2008:1519-1524.
[99] CHENG Y H. Viability of tensegrity robots in space exploration[D]. Berkeley:University of California at Berkeley, 2014.
[100] DUBOWSKY S, IAGNEMMA K, LIBERATORE S, et al. A concept mission:Microbots for large-scale planetary surface and subsurface exploration[C]//Space Technology and Applications, 2005:1449-1458.
[101] YOSHIMITSU T, SASAKI S, YANAGISAWA M, et al. Scientific capability of minerva rover in hayabusa asteroid mission[C]//Lunar and Planetary Science Conference, 2004.
[102] LI B, DENG Q, LIU Z C. A spherical hopping robot for exploration in complex environments[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE Press, 2009:402-407.
[103] 柏龙, 葛文杰, 陈晓红, 等. 用于行星探测的跳跃机器人研究[J]. 机器人, 2009, 31(4):311-319. BAI L, GE W J, CHEN X H, et al. Research on hopping robot for planetary exploration[J]. Robot, 2009, 31(4):311-319(in Chinese).
[104] 柏龙, 葛文杰, 陈晓红, 等. 星面探测仿生间歇式跳跃机器人设计及实现[J]. 机器人, 2012, 34(1):32-37. BAI L, GE W J, CHEN X H, et al. Design and implementation of a bio-inspired intermittent hopping robot for planetary surface exploration[J]. Robot, 2012, 34(1):32-37(in Chinese).
[105] LIU G H, LIN H Y, LIN H Y, et al. A bio-inspired hopping kangaroo robot with an active tail[J]. Journal of Bionic Engineering, 2014, 11(4):541-555.
Outlines

/